79 research outputs found
Enhancement of immune response of HBsAg loaded poly(L-lactic acid) microspheres against Hepatitis B through incorporation of alum and chitosan
Purpose: Poly (L-lactic acid) (PLA) microparticles encapsulating Hepatitis B surface antigen (HBsAg) with alum and chitosan were investigated for their potential as a vaccine delivery system.
Methods: The microparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method with polyvinyl alcohol (PVA) or chitosan as the external phase stabilising agent showed a significant increase in the encapsulation efficiency of the antigen.
Results: PLA-Alum and PLA-chitosan microparticles induced HBsAg serum specific IgG antibody responses significantly higher than PLA only microparticles and free antigen following subcutaneous administration. Chitosan not only imparted a positive charge to the surface of the microparticles but was also able to increase the serum specific IgG antibody responses significantly.
Conclusions: The cytokine assays showed that the serum IgG antibody response induced is different according to the formulation, indicated by the differential levels of interleukin 4 (IL-4), interleukin 6 (IL-6) and interferon gamma (IFN-γ). The microparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-4, IL-6 and IFN-γ
Synthetic Nanoparticles for Vaccines and Immunotherapy
The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such
as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the
science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
Preparation and Evaluation of Poly(Ethylene Glycol)–Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A
A series of monomethoxy poly(ethylene glycol)–poly(lactide) (mPEG–PLA) diblock copolymers were designed according to polymer–drug compatibility and synthesized, and mPEG–PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug
Surface controlled nanospheres as drug carriers for intravenous and intranasal administration
ABSTRACTThe arival on the market of new therapeutic and antigenic molecules requires the development of appropriate delivery systems. The design of injectable nanoparticulate drug caniers invisible to the mononuclear phagocyte system is a major challenge. Also, overcoming mucosa baniers, such as the nasal one, using biodegradable nanospheres is another strategy still to be explored. These routes of administration require nanoparticulate systems with optimized surface properties. We investigated the ability of polyethylene glycol (PEG)-coated nanospheres made of amphiphilic diblock copolymers to achieve these goals. After an optimization of the nanosphere surface properties, we studied the possibility of entrapping macromolecules within the PEG-coated nanospheres. Results showed that it is possible to encapsulate a model protein, human serum albumin (HSA) within monodisperse nanospheres of a mean diameter of about 200 nm, reaching loadings as high as 9% (w/w). Moreover, these nanospheres showed excellent abilities for the transport of a model antigen, tetanus toxoid (Tr) through the nasal mucosa.</jats:p
- …
