962 research outputs found
Valiente Kroon's obstructions to smoothness at infinity
We conjecture an interpretation in terms of multipole moments of the
obstructions to smoothness at infinity found for time-symmetric,
conformally-flat initial data by Valiente Kroon (Comm. Math. Phys. 244 (2004),
133-156).Comment: To appear in GR
Engineered surfaces to control secondary electron emission for multipactor suppression
A significant problem for space-based systems is multipactor - an avalanche of electrons caused by repeated secondary electron emission (SEE). The consequences of multipactor range from altering the operation of radio frequency (RF) devices to permanent device damage. Existing efforts to suppress multipactor rely heavily on limiting power levels below a multipactor threshold [1]. This research applies surface micromachining techniques to create porous surfaces to control the secondary electron yield (SEY) of a material for multipactor suppression. Surface characteristics of interest include pore aspect ratio and density. A discussion is provided on the advantage of using electroplating (vice etching) to create porous surfaces for studying the relationships between SEY and pore aspect ratio & density (i.e. porosity). Preventing multipactor through SEY reduction will allow power level restrictions to be eased, leading to more powerful and capable space-based systems
The Black Hole Mass in Brightest Cluster Galaxy NGC 6086
We present the first direct measurement of the central black hole mass, M_BH,
in NGC 6086, the Brightest Cluster Galaxy (BCG) in Abell 2162. Our
investigation demonstrates for the first time that stellar dynamical
measurements of M_BH in BCGs are possible beyond the nearest few galaxy
clusters. We observed NGC 6086 with laser guide star adaptive optics and the
integral-field spectrograph (IFS) OSIRIS at the W.M. Keck Observatory, and with
the seeing-limited IFS GMOS-N at Gemini Observatory North. We combined the two
IFS data sets with existing major-axis kinematics, and used axisymmetric
stellar orbit models to determine M_BH and the R-band stellar mass-to-light
ratio, M*/L_R. We find M_BH = 3.6(+1.7)(-1.1) x 10^9 M_Sun and M*/L_R =
4.6(+0.3)(-0.7) M_Sun/L_Sun (68% confidence), from models using the most
massive dark matter halo allowed within the gravitational potential of the host
cluster. Models fitting only IFS data confirm M_BH ~ 3 x 10^9 M_Sun and M*/L_R
~ 4 M_Sun/L_Sun, with weak dependence on the dark matter halo structure. When
data out to 19 kpc are included, the unrealistic omission of dark matter causes
the best-fit black hole mass to decrease dramatically, to 0.6 x 10^9 M_Sun, and
the best-fit stellar mass-to-light ratio to increase to 6.7 M_Sun/L_Sun. The
latter value is at further odds with stellar population studies favoring M*/L ~
2 M_Sun/L_Sun,R. Biases from dark matter omission could extend to dynamical
models of other galaxies with central stellar cores, and new measurements of
M_BH from models with dark matter could steepen the empirical scaling
relationships between black holes and their host galaxies.Comment: 22 pages, 19 figures; accepted for publication in Ap
Mapping the G-structures and supersymmetric vacua of five-dimensional N=4 supergravity
We classify the supersymmetric vacua of N=4, d=5 supergravity in terms of
G-structures. We identify three classes of solutions: with R^3, SU(2) and
generic SO(4) structure. Using the Killing spinor equations, we fully
characterize the first two classes and partially solve the latter. With the N=4
graviton multiplet decomposed in terms of N=2 multiplets: the graviton, vector
and gravitino multiplets, we obtain new supersymmetric solutions corresponding
to turning on fields in the gravitino multiplet. These vacua are described in
terms of an SO(5) vector sigma-model coupled with gravity, in three or four
dimensions. A new feature of these N=4 vacua, which is not seen from an N=2
point of view, is the possibility for preserving more exotic fractions of
supersymmetry. We give a few concrete examples of these new supersymmetric
(albeit singular) solutions. Additionally, we show how by truncating the N=4,
d=5 set of fields to minimal supergravity coupled with one vector multiplet we
recover the known two-charge solutions.Comment: 31 pages, late
New supersymmetric solutions of N=2, D=5 gauged supergravity with hyperscalars
We construct new supersymmetric solutions, including AdS bubbles, in an N=2
truncation of five-dimensional N=8 gauged supergravity. This particular
truncation is given by N=2 gauged supergravity coupled to two vector multiples
and three incomplete hypermultiplets, and was originally investigated in the
context of obtaining regular AdS bubble geometries with multiple active
R-charges. We focus on cohomogeneity-one solutions corresponding to objects
with two equal angular momenta and up to three independent R-charges.
Curiously, we find a new set of zero and negative mass solitons asymptotic to
AdS_5/Z_k, for k \ge 3, which are everywhere regular without closed timelike
curves.Comment: Latex 3 times, 42 page
Bubbling AdS and droplet descriptions of BPS geometries in IIB supergravity
This paper focuses on supergravity duals of BPS states in N=4 super
Yang-Mills. In order to describe these duals, we begin with a sequence of
breathing mode reductions of IIB supergravity: first on S^3, then S^3 x S^1,
and finally on S^3 x S^1 x CP^1. We then follow with a complete supersymmetry
analysis, yielding 1/8, 1/4 and 1/2 BPS configurations, respectively (where in
the last step we take the Hopf fibration of S^3). The 1/8 BPS geometries, which
have an S^3 isometry and are time-fibered over a six-dimensional base, are
determined by solving a non-linear equation for the Kahler metric on the base.
Similarly, the 1/4 BPS configurations have an S^3 x S^1 isometry and a
four-dimensional base, whose Kahler metric obeys another non-linear,
Monge-Ampere type equation.
Despite the non-linearity of the problem, we develop a universal bubbling AdS
description of these geometries by focusing on the boundary conditions which
ensure their regularity. In the 1/8 BPS case, we find that the S^3 cycle
shrinks to zero size on a five-dimensional locus inside the six-dimensional
base. Enforcing regularity of the full solution requires that the interior of a
smooth, generally disconnected five-dimensional surface be removed from the
base. The AdS_5 x S^5 ground state corresponds to excising the interior of an
S^5, while the 1/8 BPS excitations correspond to deformations (including
topology change) of the S^5 and/or the excision of additional droplets from the
base. In the case of 1/4 BPS configurations, by enforcing regularity
conditions, we identify three-dimensional surfaces inside the four-dimensional
base which separate the regions where the S^3 shrinks to zero size from those
where the S^1 shrinks.Comment: 94 pages, 6 figures, latex, typos corrected, references added, one
new Appendi
Photometry of Kuiper belt object (486958) Arrokoth from New Horizons LORRI
On January 1st 2019, the New Horizons spacecraft flew by the classical Kuiper belt object (486958) Arrokoth (provisionally designated 2014 MU69), possibly the most primitive object ever explored by a spacecraft. The I/F of Arrokoth is analyzed and fit with a photometric function that is a linear combination of the Lommel-Seeliger (lunar) and Lambert photometric functions. Arrokoth has a geometric albedo of p_v = 0.21_(−0.04)^(+0.05) at a wavelength of 550 nm and ≈0.24 at 610 nm. Arrokoth's geometric albedo is greater than the median but consistent with a distribution of cold classical Kuiper belt objects whose geometric albedos were determined by fitting a thermal model to radiometric observations. Thus, Arrokoth's geometric albedo adds to the orbital and spectral evidence that it is a cold classical Kuiper belt object. Maps of the normal reflectance and hemispherical albedo of Arrokoth are presented. The normal reflectance of Arrokoth's surface varies with location, ranging from ≈0.10–0.40 at 610 nm with an approximately Gaussian distribution. Both Arrokoth's extrema dark and extrema bright surfaces are correlated to topographic depressions. Arrokoth has a bilobate shape and the two lobes have similar normal reflectance distributions: both are approximately Gaussian, peak at ≈0.25 at 610 nm, and range from ≈0.10–0.40, which is consistent with co-formation and co-evolution of the two lobes. The hemispherical albedo of Arrokoth varies substantially with both incidence angle and location, the average hemispherical albedo at 610 nm is 0.063 ± 0.015. The Bond albedo of Arrokoth at 610 nm is 0.062 ± 0.015
Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase
hSMUG1 (human single-stranded selective monofunctional uracil-DNA glyscosylase) is one of three glycosylases encoded within a small region of human chromosome 12. Those three glycosylases, UNG (uracil-DNA glycosylase), TDG (thymine-DNA glyscosylase), and hSMUG1, have in common the capacity to remove uracil from DNA. However, these glycosylases also repair other lesions and have distinct substrate preferences, indicating that they have potentially redundant but not overlapping physiological roles. The mechanisms by which these glycosylases locate and selectively remove target lesions are not well understood. In addition to uracil, hSMUG1 has been shown to remove some oxidized pyrimidines, suggesting a role in the repair of DNA oxidation damage. In this paper, we describe experiments in which a series of oligonucleotides containing purine and pyrimidine analogs have been used to probe mechanisms by which hSMUG1 distinguishes potential substrates. Our results indicate that the preference of hSMUG1 for mispaired uracil over uracil paired with adenine is best explained by the reduced stability of a duplex containing a mispair, consistent with previous reports with Escherichia coli mispaired uracil-DNA glycosylase. We have also extended the substrate range of hSMUG1 to include 5-carboxyuracil, the last in the series of damage products from thymine methyl group oxidation. The properties used by hSMUG1 to select damaged pyrimidines include the size and free energy of solvation of the 5-substituent but not electronic inductive properties. The observed distinct mechanisms of base selection demonstrated for members of the uracil glycosylase family help explain how considerable diversity in chemical lesion repair can be achieved
- …
