1,024 research outputs found
Influence of Numerical Integration on Convergence of Eigenvalues in the MHD Stability Analysis
Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations
The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA)
experiment at the Antiproton Decelerator (AD) facility of CERN constructed
segmented scintillators to detect and track the charged pions which emerge from
antiproton annihilations in a future superconducting radiofrequency Paul trap
for antiprotons. A system of 541 cast and extruded scintillator bars were
arranged in 11 detector modules which provided a spatial resolution of 17 mm.
Green wavelength-shifting fibers were embedded in the scintillators, and read
out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The
photoelectron yields of various scintillator configurations were measured using
a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon
photomultipliers, fiber end terminations, and couplings between the fibers and
scintillators were compared. The detectors were also tested using the
antiproton beam of the AD. Nonlinear effects due to the saturation of the
silicon photomultiplier were seen at high annihilation rates of the
antiprotons.Comment: Copyright 2014 American Institute of Physics. This article may be
downloaded for personal use only. Any other use requires prior permission of
the author and the American Institute of Physics. The following article
appeared in Review of Scientific Instruments, Vol.85, Issue 2, 2014 and may
be found at http://dx.doi.org/10.1063/1.486364
Approximation of the critical buckling factor for composite panels
This article is concerned with the approximation of the critical buckling factor for thin composite plates. A new method to improve the approximation of this critical factor is applied based on its behavior with respect to lamination parameters and loading conditions. This method allows accurate approximation of the critical buckling factor for non-orthotropic laminates under complex combined loadings (including shear loading). The influence of the stacking sequence and loading conditions is extensively studied as well as properties of the critical buckling factor behavior (e.g concavity over tensor D or out-of-plane lamination parameters). Moreover, the critical buckling factor is numerically shown to be piecewise linear for orthotropic laminates under combined loading whenever shear remains low and it is also shown to be piecewise continuous in the general case. Based on the numerically observed behavior, a new scheme for the approximation is applied that separates each buckling mode and builds linear, polynomial or rational regressions for each mode. Results of this approach and applications to structural optimization are presented
Ordered phase and phase transitions in the three-dimensional generalized six-state clock model
We study the three-dimensional generalized six-state clock model at values of
the energy parameters, at which the system is considered to have the same
behavior as the stacked triangular antiferromagnetic Ising model and the
three-state antiferromagnetic Potts model. First, we investigate ordered phases
by using the Monte Carlo twist method (MCTM). We confirmed the existence of an
incompletely ordered phase (IOP1) at intermediate temperature, besides the
completely ordered phase (COP) at low-temperature. In this intermediate phase,
two neighboring states of the six-state model mix, while one of them is
selected in the low temperature phase. We examine the fluctuation the mixing
rate of the two states in IOP1 and clarify that the mixing rate is very stable
around 1:1.
The high temperature phase transition is investigated by using
non-equilibrium relaxation method (NERM). We estimate the critical exponents
beta=0.34(1) and nu=0.66(4). These values are consistent with the 3D-XY
universality class. The low temperature phase transition is found to be of
first-order by using MCTM and the finite-size-scaling analysis
Thermally-induced magnetic phases in an Ising spin Kondo lattice model on a kagome lattice at 1/3-filling
Numerical investigation on the thermodynamic properties of an Ising spin
Kondo lattice model on a kagome lattice is reported. By using Monte Carlo
simulation, we investigated the magnetic phases at 1/3-filling. We identified
two successive transitions from high-temperature paramagnetic state to a
Kosterlitz-Thouless-like phase in an intermediate temperature range and to a
partially disordered phase at a lower temperature. The partially disordered
state is characterized by coexistence of antiferromagnetic hexagons and
paramagnetic sites with period . We compare the results
with those for the triangular lattice case.Comment: 4 pages, 2 figure
- …
