13 research outputs found
PRACTICAL DESIGN EXAMPLES FOR HUMAN HABITATS IN SPACE, OFF-GRID, AND IN LOW-IMPACT COMMUNITIES
All human habitat problems fall into three major categories- the environment, the habitat itself, and the occupants. By breaking these problems down into common themes and addressing them directly, we can build a common knowledge base for all three challenges faced by humanity. A crew living in space has the new problems of coping with radiation, microgravity, and vacuum. All the while, they are dealing the usual issues of eating, sleeping, and getting along with the rest of the occupants. By isolating the differences between space and earth habitats, we can create common architectural styles for each human habitat challenge where commonality is appropriate. We can then examine the differences, then isolate and modularize the secondary systems where possible. This simplifies experimentation and testing of the physical and psychological design of a structure on Earth prior to attempting use in space. It also allows spin-off architectures for extreme environments, off-grid settlements, research bases, and low impact communities on Earth. By isolating and testing each attribute of the system in parallel with control groups, we can scientifically refine the systems for human shelter regardless of environment. This paper will show numerous examples of architectures designed for space or space analog research bases. These designs can be both de-scoped to off-grid sustainable architecture, and scoped up for space habitat applications. Concepts such as internal greenhouses, enclosed permaculture, thermal protection, energy management, and radiation shielding are included for both minimal habitats and large bases. These systems can then be applied for disaster first responders, research bases in extreme environments, o-grid homes, and low-impact communities
The Designers Leap: Boundary Jumping to foster interdisciplinarity between Textile Design and Science
Creative thinking is an instinctive problem-solving process for designers however, designers alone cannot solve real-world problems. Collaboration between higher education and industry, and across design and science disciplines can create new paradigms of research to address societal and economic challenges. This paper argues from the perspective of fashion and textile designers, for design to be at the heart of the collaborative research process and advocates for co-design, speculative-design and scenario design to be considered as valid methodologies to foster interdisciplinarity. Perspectives on interdisciplinary partnerships across academic disciplines and with industry are typified by two very different reflections of collaborative projects between fashion designers, textile designers, scientists and industrial partners. The paper identifies commonalities and differences between scientists and designers, with particular relevance to textiles, in a bid to understand how they may collaborate more effectively in the context of interdisciplinary work, and the paper further identifies factors needed for establishing common enablers for engaging in co-design. This is an under-explored field and highlights the changing role of the designer, and as such is of value to researchers in textiles, fashion and product design
A Novel Line Fractal Pied de Poule (Houndstooth)
Abstract In earlier work we proposed a fractal pied de poule inspired by Cantor's dust, building on a mathematical analyis of the classical pied de poule pattern. Now we propose another fractal pied de poule implemented as a single line. Instead of blocks which get fragmented into smaller and smaller blocks, we begin with a single continuous line which is expanded by adding more and more nested zigzags. Although the former approach takes a two-dimensional starting point and the latter a one-dimensional starting point, the resulting fractal dimensions are comparable (also depending on the type of the original pied de poule being fractalised). We calculate the fractal dimension and develop a fashion item based on the new pattern, to be shown at Bridges
Analysis of parallel collaboration assignments in smart textile design
Many interesting smart textile concepts have been developed, however there are only a few relevant examples of concepts that are producible and valuable for our society. The so-called ‘killer application’ has not been found yet. That is why it is extremely important that multi-disciplinary parties team-up during the ideation process to come up with innovative solutions (Toeters, 2007). The goal of STS CRISP (Crisp, 2011) is to integrate existing knowledge from partners in the separate domains of textile (soft materials), technology and service providers. To investigate the different kinds of expertise necessary for the development of Smart Textile Services we initiated an assignment to develop new Smart Textile Services concepts for elderly that can be used during rehabilitation (ten Bhömer, Tomico, Kleinsmann, Kuusk & Wensveen, 2012) and executed this project in 2 different institutes: Saxion University of Applied Sciences and Eindhoven University of Technology (TU/e). Through some pre-set contact moments, the use of a gatekeeper (Vertooren, 2007) active in both institutes, and analyzing the final reports we are able to acquire an insight in the different approaches and focus preferences of the institutes. The analysis lead to the following observations: 1. Saxion students spend more time researching existing technologies and how to implement them in their concepts. A more theoretical approach from what is already there, applying existing materials and opportunities that are already there. 2. The TU/e students consistently focused on on user research to find out their perspectives. More user-centered. 3. Saxion students start with ideation and validate this by analyzing what is available in the market at the beginning of the process. 4. TU/e students work from a societal perspective towards user focus and an idea. TU/e students found out that there is a lot more steps after prototyping. Saxion takes the next step: where TU/e students stop, they continue. Out of these observations we can conclude that the institutes are active on different levels on the time-to-market line. We have to take into account that every collaborator has a different time-to-market horizon. For the STS CRISP consortium this means that efforts have to be made to define the time-to-market expertise of the partners. As a next step, we will continue to explore this concept of parallel collaboration assignments and start a new collaboration assignment in sequence in different institutes. Test the time-to-market approach and gather strategies to create a more in depth approach to relevant marketable products can speed up the process of bringing concepts to the market, so that it can have a true added value for society
Research through design: A way to drive innovative solutions in the field of smart textiles
Research through design allows creating a dialogue with the material. It uses making andreflection on action as a generator of knowledge. Our aim is to explore the opportunities and challenges of smart textiles. The Fablab is our set up, a place that allows us to combine the hackingscientific-, and design community. It stimulates collaboration and the knowledge exchange needed for the development of smart textile systems. A collaborative prototyping workshop for medical products combined two worlds. The textile world in Saxion aims at incorporating conductive materials into textile structures and functional- / 3D printing to create systems for applications such as flexible heating systems and wearable technology. We combined this with the world of Industrial Design at TU/e, focused on the design of intelligent products, systems and services by the research through design approach. The collaboration between these different disciplines accelerated the process by reducing the resistance to the new and skipped the frustration on failure.
Article from the Saxion Research Centre for Design and Technology published in the book 'Smart and Interactive Textile ' (pages 112-117), for the 4th International Conference Smart Materials, Structures and Systems, Montecatini Terme, Tuscany, Italy, 10th-14th June 2012.
 
An interactive playmat to support bonding between parents and young children with visual (and intellectual) disabilities
The design evolution of the zipper: a patent review
Cliff is a project which aims to develop an automatized zipper for the zipping and unzipping process. The focus of this study is to visualize the evolution trends of the zipper (slide fastener) since its first invention back in 1851 to 2017. The patent analysis was performed to develop the evolution map based in advance invention. The search has been limited to approved patents in the United States of America and Japan (US & JP) database using the search terms "zipper" and the Cooperative Patent Classification (CPC) of A44B. Total of 940 patent reports were extracted from the Google Patents. The finding shows that the zipper‘s design has evolved from the conventional type to the removable, rollable, adjustable, and currently, the inventions are moving towards designing an automatic slider or even a robotic zipper. This situation is aligned with our direction, mission, and vision to design and develop Cliff as an automatized zipper
Research through design : a way to drive innovative solutions in the field of smart textiles
Research through design allows creating a dialogue with the material. It uses making and reflection on action as a generator of knowledge. Our aim is to explore the opportunities and challenges of smart textiles. The Fablab is our set up, a place that allows us to combine the hacking- scientific-, and design community. It stimulates collaboration and the knowledge exchange needed for the development of smart textile systems. A collaborative prototyping workshop for medical products combined two worlds. The textile world in Saxion aims at incorporating conductive materials into textile structures and functional- / 3D printing to create systems for applications such as flexible heating systems and wearable technology. We combined this with the world of Industrial Design at TU/e, focused on the design of intelligent products, systems and services by the research through design approach. The collaboration between these different disciplines speeded up the process by reducing the resistance to the new and skipped the frustration on failure
Weaving Together Disciplines: Service Blueprinting for Multidisciplinary E-Textile Design
The advancements of e-textiles have accelerated innovation in diverse fields such as wearable technology and safety but face several challenges in commercial viability. Within the field of Human–Computer Interaction (HCI), comprehensive textile knowledge is often underrated which could lead to issues with user-acceptability, and ununiformed design choices, neglecting the textile’s tactile qualities. Designers often overlook the balance between aesthetics and functionality, while manufacturing companies struggle with limited documentation and gaps between textile and hardware manufacturing. To facilitate multidisciplinary e-textile development, this study encourages the use of service blueprinting to enhance collaboration and knowledge transfer across disciplines, illustrated by a use case
