1,256 research outputs found
Why 'scaffolding' is the wrong metaphor : the cognitive usefulness of mathematical representations.
The metaphor of scaffolding has become current in discussions of the cognitive help we get from artefacts, environmental affordances and each other. Consideration of mathematical tools and representations indicates that in these cases at least (and plausibly for others), scaffolding is the wrong picture, because scaffolding in good order is immobile, temporary and crude. Mathematical representations can be manipulated, are not temporary structures to aid development, and are refined. Reflection on examples from elementary algebra indicates that Menary is on the right track with his ‘enculturation’ view of mathematical cognition. Moreover, these examples allow us to elaborate his remarks on the uniqueness of mathematical representations and their role in the emergence of new thoughts.Peer reviewe
Quantum lattice gases and their invariants
The one particle sector of the simplest one dimensional quantum lattice gas
automaton has been observed to simulate both the (relativistic) Dirac and
(nonrelativistic) Schroedinger equations, in different continuum limits. By
analyzing the discrete analogues of plane waves in this sector we find
conserved quantities corresponding to energy and momentum. We show that the
Klein paradox obtains so that in some regimes the model must be considered to
be relativistic and the negative energy modes interpreted as positive energy
modes of antiparticles. With a formally similar approach--the Bethe ansatz--we
find the evolution eigenfunctions in the two particle sector of the quantum
lattice gas automaton and conclude by discussing consequences of these
calculations and their extension to more particles, additional velocities, and
higher dimensions.Comment: 19 pages, plain TeX, 11 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages
Modulational instability and wave amplification in finite water depth
The modulational instability of a uniform wave train to side band
perturbations is one of the most plausible mechanisms for the generation of
rogue waves in deep water. In a condition of finite water depth, however, the
interaction with the sea floor generates a wave-induced current that
subtracts energy from the wave field and consequently attenuates the
instability mechanism. As a result, a plane wave remains stable under the
influence of collinear side bands for relative depths <i>kh</i> ≤ 1.36 (where <i>k</i>
is the wavenumber of the plane wave and <i>h</i> is the water depth), but it can
still destabilise due to oblique perturbations. Using direct numerical
simulations of the Euler equations, it is here demonstrated that oblique side
bands are capable of triggering modulational instability and eventually
leading to the formation of rogue waves also for <i>kh</i> ≤ 1.36. Results,
nonetheless, indicate that modulational instability cannot sustain a
substantial wave growth for <i>kh</i> < 0.8
On the probability of occurrence of rogue waves
A number of extreme and rogue wave studies have been conducted theoretically, numerically, experimentally and based on field data in the last years, which have significantly advanced our knowledge of ocean waves. So far, however, consensus on the probability of occurrence of rogue waves has not been achieved. The present investigation is addressing this topic from the perspective of design needs. Probability of occurrence of extreme and rogue wave crests in deep water is here discussed based on higher order time simulations, experiments and hindcast data. Focus is given to occurrence of rogue waves in high sea states
A simple trapped-ion architecture for high-fidelity Toffoli gates
We discuss a simple architecture for a quantum Toffoli gate implemented using
three trapped ions. The gate, which in principle can be implemented with a
single laser-induced operation, is effective under rather general conditions
and is strikingly robust (within any experimentally realistic range of values)
against dephasing, heating and random fluctuations of the Hamiltonian
parameters. We provide a full characterization of the unitary and
noise-affected gate using three-qubit quantum process tomography
Three-Qubit Gate Realization Using Single Quantum Particle
Using virtual spin formalism it is shown that a quantum particle with eight
energy levels can store three qubits. The formalism allows to realize a
universal set of quantum gates. Feasible formalism implementation is suggested
which uses nuclear spin-7/2 as a storage medium and radio frequency pulses as
the gates. One pulse realization of all universal gates has been found,
including three-qubit Toffoli gate.Comment: LaTeX, 6 pages, no figures; Submitted to "Pis'ma v Zh. Eksp. Teor.
Fiz.
A Two-Player Game of Life
We present a new extension of Conway's game of life for two players, which we
call p2life. P2life allows one of two types of token, black or white, to
inhabit a cell, and adds competitive elements into the birth and survival rules
of the original game. We solve the mean-field equation for p2life and determine
by simulation that the asymptotic density of p2life approaches 0.0362.Comment: 7 pages, 3 figure
Evading quantum mechanics
Quantum mechanics is potentially advantageous for certain
information-processing tasks, but its probabilistic nature and requirement of
measurement back action often limit the precision of conventional classical
information-processing devices, such as sensors and atomic clocks. Here we show
that by engineering the dynamics of coupled quantum systems, it is possible to
construct a subsystem that evades the measurement back action of quantum
mechanics, at all times of interest, and obeys any classical dynamics, linear
or nonlinear, that we choose. We call such a system a quantum-mechanics-free
subsystem (QMFS). All of the observables of a QMFS are quantum-nondemolition
(QND) observables; moreover, they are dynamical QND observables, thus
demolishing the widely held belief that QND observables are constants of
motion. QMFSs point to a new strategy for designing classical
information-processing devices in regimes where quantum noise is detrimental,
unifying previous approaches that employ QND observables, back-action evasion,
and quantum noise cancellation. Potential applications include
gravitational-wave detection, optomechanical force sensing, atomic
magnetometry, and classical computing. Demonstrations of dynamical QMFSs
include the generation of broad-band squeezed light for use in interferometric
gravitational-wave detection, experiments using entangled atomic spin
ensembles, and implementations of the quantum Toffoli gate.Comment: v2: changed the title, added a figure, and made some minor update
Density Functional Theory for the Photoionization Dynamics of Uracil
Photoionization dynamics of the RNA base Uracil is studied in the framework
of Density Functional Theory (DFT). The photoionization calculations take
advantage of a newly developed parallel version of a multicentric approach to
the calculation of the electronic continuum spectrum which uses a set of
B-spline radial basis functions and a Kohn-Sham density functional hamiltonian.
Both valence and core ionizations are considered. Scattering resonances in
selected single-particle ionization channels are classified by the symmetry of
the resonant state and the peak energy position in the photoelectron kinetic
energy scale; the present results highlight once more the site specificity of
core ionization processes. We further suggest that the resonant structures
previously characterized in low-energy electron collision experiments are
partly shifted below threshold by the photoionization processes. A critical
evaluation of the theoretical results providing a guide for future experimental
work on similar biosystems
- …
