2,271 research outputs found
Liquid phase immunoassay utilizing magnetic marker and high Tc superconducting quantum interference device
We have developed a liquid phase immunoassay system utilizing a magnetic marker and a superconducting quantum interference device (SQUID). In this system, the magnetic marker was used to detect the biological material called antigen. The magnetic marker was designed so as to generate a remanence, and the remanence field of the markers that bound to the antigens was measured with the SQUID. The measurement was performed in a solution that contained both the bound and free (or unbound) markers, i.e., without using the so-called bound/free (BF) separation process. The Brownian rotation of the free markers in the solution was used to distinguish the bound markers from the free ones. Using the system, we conducted the detection of biological material called IgE without BF separation. At present, we could detect the IgE down to 7 pg (or 39 amol
Elaboration and characterization of Fe1–xO thin films sputter deposited from magnetite target
Majority of the authors report elaboration of iron oxide thin films by reactive magnetron sputtering from an iron target with Ar–O2 gas mixture. Instead of using the reactive sputtering of a metallic target we report here the preparation of Fe1–xOthin films, directly sputtered froma magnetite target in a pure argon gas flow with a bias power applied. This oxide is generally obtained at very low partial oxygen pressure and high temperature.We showed that bias sputtering which can be controlled very easily can lead to reducing conditions during deposition of oxide thin film on simple glass substrates. The proportion of wustite was directly adjusted bymodifying the power of the substrate polarization. Atomic force microscopy was used to observe these nanostructured layers. Mössbauer measurements and electrical properties versus bias polarization and annealing temperature are also reported
Stacking-order dependent transport properties of trilayer graphene
We report markedly different transport properties of ABA- and ABC-stacked
trilayer graphenes. Our experiments in double-gated trilayer devices provide
evidence that a perpendicular electric field opens an energy gap in the ABC
trilayer, while it causes the increase of a band overlap in the ABA trilayer.
In a perpendicular magnetic field, the ABA trilayer develops quantum Hall
plateaus at filling factors of \nu = 2, 4, 6... with a step of \Delta \nu = 2,
whereas the inversion symmetric ABC trilayer exhibits plateaus at \nu = 6 and
10 with 4-fold spin and valley degeneracy.Comment: 4 pages, 4 figure
Observation of micropores in hard-carbon using Xe-129 NMR porosimetry
The existence of micropores and the change of surface structure in pitch-based hard-carbon in xenon atmosphere were demonstrated using Xe-129 NMR. For high-pressure (4.0 MPa) Xe-129 NMR measurements, the hard-carbon samples in Xe gas showed three peaks at 27, 34 and 210 ppm. The last was attributed to the xenon in micropores (<1 nm) in hard-carbon particles. The NMR spectrum of a sample evacuated at 773 K and exposed to 0.1 MPa Xe gas at 773 K for 24 h showed two peaks at 29 and 128 ppm, which were attributed, respectively, to the xenon atoms adsorbed in the large pores (probably mesopores) and micropores of hard-carbon. With increasing annealing time in Xe gas at 773 K, both peaks shifted and merged into one peak at 50 ppm. The diffusion of adsorbed xenon atoms is very slow, probably because the transfer of molecules or atoms among micropores in hard-carbon does not occur readily. Many micropores are isolated from the outer surface. For that reason, xenon atoms are thought to be adsorbed only by micropores near the surface, which are easily accessible from the surrounding space.</p
Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance
We investigate strong coupling effects on the superfluid phase transition in
a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance
describes a composite quasi-Boson, which can give rise to an additional pairing
interaction between the Fermi atoms. This attractive interaction becomes
stronger as the threshold energy of the Feshbach resonance two-particle bound
state is lowered. In a recent paper, we showed that in the uniform Fermi gas,
this tunable pairing interaction naturally leads to a BCS-BEC crossover of the
Nozi`eres and Schmitt-Rink kind, in which the BCS-type superfluid phase
transition continuously changes into the BEC-type as the threshold energy is
decreased. In this paper, we extend our previous work by including the effect
of a harmonic trap potential, treated within the local density approximation
(LDA). We also give results for both weak and strong coupling to the Feshbach
resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the
shape of the atomic density profile at the superfluid phase transition
temperature Tc, reflecting the change of the dominant particles going from
Fermi atoms to composite Bosons. In the BEC regime, these composite Bosons are
shown to first appear well above Tc. We also discuss the "phase diagram" above
Tc as a function of the tunable threshold energy. We introduce a characteristic
temperature T* describing the effective crossover in the normal phase from a
Fermi gas of atoms to a gas of stable molecules.Comment: 43 pages, 13 figures (submitted to PRA
Invited; What can we do with ferroelectric gate?
Thin film transistors (TFTs) are one of the key devices in flat panel displays and oxide channel TFTs are currently employed in such applications. Adding functionality to TFTs is an interesting topic for exploring new applications and ferroelectric materials are promising candidates to add functionality to TFTs. When the ferroelectric material is used as a gate insulator, the device has nonvolatile memory function. In addition, we pointed out that the ferroelectric gate can induce much larger charge density than the conventional paraelectric gate insulator [1]. As a result, conductive oxide such as indium-tin oxide (ITO) can be used as a channel, if the thickness is sufficiently thin. Figure 1 show transfer curve of a ferroelectric-gate TFT using Y-doped Hf-Zr-O (YHZO) as the gate insulator and 13-nm-thick ITO as the channel [2].
Please click Download on the upper right corner to see the full abstract
Unintentional high density p-type modulation doping of a GaAs/AlAs core-multi-shell nanowire
Achieving significant doping in GaAs/AlAs core/shell nanowires (NWs) is of
considerable technological importance but remains a challenge due to the
amphoteric behavior of the dopant atoms. Here we show that placing a narrow
GaAs quantum well in the AlAs shell effectively getters residual carbon
acceptors leading to an \emph{unintentional} p-type doping. Magneto-optical
studies of such a GaAs/AlAs core multi-shell NW reveal quantum confined
emission. Theoretical calculations of NW electronic structure confirm quantum
confinement of carriers at the core/shell interface due to the presence of
ionized carbon acceptors in the 1~nm GaAs layer in the shell.
Micro-photoluminescence in high magnetic field shows a clear signature of
avoided crossings of the Landau level emission line with the Landau
level TO phonon replica. The coupling is caused by the resonant hole-phonon
interaction, which points to a large 2D hole density in the structure.Comment: just published in Nano Letters
(http://pubs.acs.org/doi/full/10.1021/nl500818k
Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is the activating kinase for multiple downstream kinases, including CaM-kinase I (CaMKI), CaM-kinase IV (CaMKIV), protein kinase B (PKB/Akt), and 5'AMP-kinase (AMPK), through the phosphorylation of their activation-loop Thr residues in response to increasing the intracellular Ca2+ concentration, as CaMKK itself is a Ca2+/CaM-dependent enzyme. The CaMKK-mediated kinase cascade plays important roles in a number of Ca2+-dependent pathways, such as neuronal morphogenesis and plasticity, transcriptional activation, autophagy, and metabolic regulation, as well as in pathophysiological pathways, including cancer progression, metabolic syndrome, and mental disorders. This review focuses on the molecular mechanism underlying CaMKK-mediated signal transduction in normal and pathophysiological conditions. We summarize the current knowledge of the structural, functional, and physiological properties of the regulatory kinase, CaMKK, and the development and application of its pharmacological inhibitors
Adaptive Sensing Based on Profiles for Sensor Systems
This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission
A role for the CAMKK pathway in visual object recognition memory
The role of the CAMKK pathway in object recognition memory was investigated. Rats’ performance in a preferential object recognition test was examined after local infusion into the perirhinal cortex of the CAMKK inhibitor STO-609. STO-609 infused either before or immediately after acquisition impaired memory tested after a 24h but not a 20min delay. Memory was not impaired when STO-609 was infused 20min after acquisition. The expression of two downstream reaction products of CAMKK was measured by immunohistochemical staining for phospho-CAMKIThr177 and phospho-CAMKIVThr196 at 10, 40, 70 and 100 min following the viewing of novel and familiar images of objects. Processing familiar images resulted in more pCAMKI stained neurons in the perirhinal cortex than processing novel images at the 10min and 40min delays. Perirhinal neuronal counts for pCAMKIV were lower than for pCAMKI and no differential effects of processing novel and familiar images were found for pCAMKIV. Prior infusion of STO-609 caused a reduction in pCAMKI stained neurons in response to viewing either novel or familiar images, consistent with its role as an inhibitor of CAMKK. The results establish that the CAMKK pathway within the perirhinal cortex is important for the consolidation of object recognition memory. The immunohistochemical imaging for pCAMKI indicated that CAMKI might be involved in reconsolidation mechanisms for familiar stimuli in addition to consolidation mechanisms for novel stimuli. The activation of pCAMKI after acquisition is earlier than previously reported for pCAMKII. In contrast to CAMKI and CAMKII, CAMKIV appears to be unimportant for perirhinal recognition memory processes
- …
