1,210 research outputs found

    The Exosome Subunit Rrp44 Plays a Direct Role in RNA Substrate Recognition

    Get PDF
    The exosome plays key roles in RNA maturation and surveillance, but it is unclear how target RNAs are identified. We report the functional characterization of the yeast exosome component Rrp44, a member of the RNase II family. Recombinant Rrp44 and the purified TRAMP polyadenylation complex each specifically recognized tRNAiMet lacking a single m1A58 modification, even in the presence of a large excess of total tRNA. This tRNA is otherwise mature and functional in translation in vivo but is presumably subtly misfolded. Complete degradation of the hypomodified tRNA required both Rrp44 and the poly(A) polymerase activity of TRAMP. The intact exosome lacking only the catalytic activity of Rrp44 failed to degrade tRNAiMet, showing this to be a specific Rrp44 substrate. Recognition of hypomodified tRNAiMet by Rrp44 is genetically separable from its catalytic activity on other substrates, with the mutations mapping to distinct regions of the protein

    Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase

    Get PDF
    In yeast, three small nucleolar RNAs (snoRNAs) are essential for the processing of pre-ribosomal RNA-U3, U14 and snR30-whereas 72 non-essential snoRNAs direct site-specific modification of pre-rRNA. We applied a quantitative screen for alterations in the pre-ribosome association to all 75 yeast snoRNAs in strains depleted of eight putative helicases implicated in 40S subunit synthesis. For the modification-guide snoRNAs, we found no clear evidence for the involvement of these helicases in the association or dissociation of pre-ribosomes. However, the DEAD box helicase Rok1 was required specifically for the release of snR30. Point mutations in motif I, but not in motif III, of the helicase domain of Rok1 impaired the release of snR30, but this was less marked than in strains depleted of Rok1, and resulted in a dominant-negative growth phenotype. Dissociation of U3 and U14 from pre-ribosomes is also dependent on helicases, suggesting that release of the essential snoRNAs might differ mechanistically from release of the modification-guide snoRNAs.</p

    Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing

    Get PDF
    Many analyses have examined subnucleolar structures in eukaryotic cells, but the relationship between morphological structures, pre-rRNA processing, and ribosomal particle assembly has remained unclear. Using a visual assay for export of the 60S ribosomal subunit, we isolated a ts-lethal mutation, rix9-1, which causes nucleolar accumulation of an Rpl25p-eGFP reporter construct. The mutation results in a single amino acid substitution (F(176)S) in Rlp7p, an essential nucleolar protein related to ribosomal protein Rpl7p. The rix9-1 (rlp7-1) mutation blocks the late pre-RNA cleavage at site C(2) in ITS2, which separates the precursors to the 5.8S and 25S rRNAs. Consistent with this, synthesis of the mature 5.8S and 25S rRNAs was blocked in the rlp7-1 strain at nonpermissive temperature, whereas 18S rRNA synthesis continued. Moreover, pre-rRNA containing ITS2 accumulates in the nucleolus of rix9-1 cells as revealed by in situ hybridization. Finally, tagged Rlp7p was shown to associate with a pre-60S particle, and fluorescence microscopy and immuno-EM localized Rlp7p to a subregion of the nucleolus, which could be the granular component (GC). All together, these data suggest that pre-rRNA cleavage at site C(2) specifically requires Rlp7p and occurs within pre-60S particles located in the GC region of the nucleolus

    Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast

    Get PDF
    Proteomic analyses in yeast have identified a large number of proteins that are associated with preribosomal particles. However, the product of the yeast ORF YJL010C, herein designated as Nop9, failed to be identified in any previous physical or genetic analysis of preribosomes. Here we report that Nop9 is a nucleolar protein, which is associated with 90S and 40S preribosomes. In cells depleted of Nop9p, early cleavages of the 35S pre-rRNA are inhibited, resulting in the nucleolar retention of accumulated precursors and a failure to synthesize 18S rRNA. Nop9 contains multiple pumilio-like putative RNA binding repeats and displays robust in vitro RNA binding activity. The identification of Nop9p as a novel, essential factor in the nuclear maturation of 90S and pre-40S ribosomal subunits shows that the complement of ribosome synthesis factors remains incomplete

    The 5 ' end of the 18S rRNA can be positioned from within the mature rRNA

    Get PDF
    In yeast, the 5' end of the mature 18S rRNA is generated by endonucleolytic cleavage at site

    Efficient termination of transcription by RNA polymerase I requires the 5 ' exonuclease Rat1 in yeast

    Get PDF
    During transcription termination by RNA polymerase II on protein-coding genes, the nuclear 5′ exonuclease Rat1/Xrn2 degrades the nascent transcript downstream from the polyadenylation site and “torpedoes” the polymerase. We report that the activity of Rat1 is also required for efficient termination by RNA polymerase I (Pol I) on the rDNA. In strains lacking catalytically active Rat1 or its cofactor Rai1, Pol I reads through the major, “Reb1-dependent” terminator (T1) but stops downstream at the “fail-safe” terminator (T2) and replication fork barrier (RFB). The absence of both Rat1 and the RFB-binding protein Fob1 increased Pol I read-through of T2 and the RFB. We propose that cotranscriptional cleavage of the pre-rRNA by the endonuclease Rnt1 generates a loading site for the Rat1/Rai1 complex, which then degrades the nascent transcript. When Rat1 catches Pol I, which is predicted to be paused at T1, transcription is terminated

    Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning

    Get PDF
    Brr2p is one of eight RNA helicases involved in pre-mRNA splicing. Detailed understanding of the functions of Brr2p and other spliceosomal helicases has been limited by lack of knowledge of their in vivo substrates. To address this, sites of direct Brr2p–RNA interaction were identified by in vivo UV cross-linking in budding yeast. Cross-links identified in the U4 and U6 small nuclear RNAs (snRNAs) suggest U4/U6 stem I as a Brr2p substrate during spliceosome activation. Further Brr2p cross-links were identified in loop 1 of the U5 snRNA and near splice sites and 3′ ends of introns, suggesting the possibility of a previously uncharacterized function for Brr2p in the catalytic center of the spliceosome. Consistent with this, mutant brr2-G858R reduced second-step splicing efficiency and enhanced cross-linking to 3′ ends of introns. Furthermore, RNA sequencing indicated preferential inhibition of splicing of introns with structured 3′ ends. The Brr2-G858Rp cross-linking pattern in U6 was consistent with an open conformation for the catalytic center of the spliceosome during first-to-second-step transition. We propose a previously unsuspected function for Brr2p in driving conformational rearrangements that lead to competence for the second step of splicing

    PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA

    Get PDF
    Nob1p (Yor056c) is essential for processing of the 20S pre-rRNA to the mature 18S rRNA. It is part of a pre-40S ribosomal particle that is transported to the cytoplasm and subsequently cleaved at the 3' end of mature 18S rRNA (D-site). Nob1p is also reported to participate in proteasome biogenesis, and it was therefore unclear whether its primary activity is in ribosome synthesis. In this work, we describe a homology model of the PIN domain of Nob1p, which structurally Mimics Mg2+-dependent exonucleases despite negligible similarity in primary sequence. Insights gained from this model were used to design a point mutation that was predicted to abolish the postulated enzymatic activity. Cells expressing Nob1p with this mutation failed to cleave the 20S pre-rRNA. This supports both the significance of the structural model and the idea that Nob1p is the long-sought D-site endonuclease.</p
    corecore