321 research outputs found

    Maximum likelihood estimation for social network dynamics

    Get PDF
    A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS313 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A comparison of various approaches to the exponential random graph model:A reanalysis of 102 student networks in school classes

    Get PDF
    This paper describes an empirical comparison of four specifications of the exponential family of random graph models (ERGM), distinguished by model specification (dyadic independence, Markov, partial conditional dependence) and, for the Markov model, by estimation method (Maximum Pseudolikelihood, Maximum Likelihood). This was done by reanalyzing 102 student networks in 57 junior high school classes. At the level of all classes combined, earlier substantive conclusions were supported by all specifications. However, the different specifications led to different conclusions for individual classes. PL produced unreliable estimates (when ML is regarded as the standard) and had more convergence problems than ML. Furthermore, the estimates of covariate effects were affected considerably by controlling for network structure, although the precise specification of the structural part (Markov or partial conditional dependence) mattered less. (C) 2007 Elsevier BX All rights reserved

    Modeling frequency and type of interaction in event networks

    Get PDF
    Longitudinal social networks are increasingly given by event data; i.e., data coding the time and type of interaction between social actors. Examples include networks stemming from computer-mediated communication, open collaboration in wikis, phone call data and interaction among political actors. In this paper, we propose a general model for networks of dyadic, typed events. We decompose the probability of events into two components: the first modeling the frequency of interaction and the second modeling the conditional event type, i. e., the quality of interaction, given that interaction takes place. While our main contribution is methodological, for illustration we apply our model to data about political cooperation and conficts collected with the Kansas Event Data System. Special emphasis is given to the fact that some explanatory variables affect the frequency of interaction while others rather determine the level of cooperativeness vs. hostility, if interaction takes place. Furthermore, we analyze if and how model components controlling for network dependencies affect findings on the effects of more traditional predictors such as geographic proximity or joint alliance membership. We argue that modeling the conditional event type is a valuable – and in some cases superior – alternative to previously proposed models for networks of typed events

    A comparison of various approaches to the exponential random graph model:A reanalysis of 102 student networks in school classes

    Get PDF
    This paper describes an empirical comparison of four specifications of the exponential family of random graph models (ERGM), distinguished by model specification (dyadic independence, Markov, partial conditional dependence) and, for the Markov model, by estimation method (Maximum Pseudolikelihood, Maximum Likelihood). This was done by reanalyzing 102 student networks in 57 junior high school classes. At the level of all classes combined, earlier substantive conclusions were supported by all specifications. However, the different specifications led to different conclusions for individual classes. PL produced unreliable estimates (when ML is regarded as the standard) and had more convergence problems than ML. Furthermore, the estimates of covariate effects were affected considerably by controlling for network structure, although the precise specification of the structural part (Markov or partial conditional dependence) mattered less. (C) 2007 Elsevier BX All rights reserved.</p

    Explained Variation in dynamic network models

    Get PDF
    A measure for explained variation is proposed for stochastic actor-driven models for data on social networks. The measure is based on the entropy of the distribution of the choices made by the actors during the network evolution process. This measure can be helpful in the specification and interpretation of statistical models for longitudinal network data.On propose une mesure de la part de variation expliquée par un modèle stochastique de la dynamique des réseaux sociaux complets. Cette mesure est fondée sur l'entropie de la distribution des choix faits par les acteurs au cours du processus d'évolution du réseau. Elle a pour but d'aider à effectuer une meilleure interprétation et à sélectionner une spécification appropriée dans l'application des modèles statistiques s'appliquant aux données longitudinales concernant des relations

    Forms of Dependence: Comparing SAOMs and ERGMs From Basic Principles

    Full text link
    Two approaches for the statistical analysis of social network generation are widely used; the tie-oriented exponential random graph model (ERGM) and the stochastic actor-oriented model (SAOM) or Siena model. While the choice for either model by empirical researchers often seems arbitrary, there are important differences between these models that current literature tends to miss. First, the ERGM is defined on the graph level, while the SAOM is defined on the transition level. This allows the SAOM to model asymmetric or one-sided tie transition dependence. Second, network statistics in the ERGM are defined globally but are nested in actors in the SAOM. Consequently, dependence assumptions in the SAOM are generally stronger than in the ERGM. Resulting from both, meso- and macro-level properties of networks that can be represented by either model differ substantively and analyzing the same network employing ERGMs and SAOMs can lead to distinct results. Guidelines for theoretically founded model choice are suggested

    Transitivity correlation:A descriptive measure of network transitivity

    Get PDF
    This paper proposes that common measures for network transitivity, based on the enumeration of transitive triples, do not reflect the theoretical statements about transitivity they aim to describe. These statements are often formulated as comparative conditional probabilities, but these are not directly reflected by simple functions of enumerations. We think that a better approach is obtained by considering the probability of a tie between two randomly drawn nodes, conditional on selected features of the network. Two measures of transitivity based on correlation coefficients between the existence of a tie and the existence, or the number, of two-paths between the nodes are developed, and called "Transitivity Phi" and "Transitivity Correlation." Some desirable properties for these measures are studied and compared to existing clustering coefficients, in both random (Erdos-Renyi) and in stylized networks (windmills). Furthermore, it is shown that in a directed graph, under the condition of zero Transitivity Correlation, the total number of transitive triples is determined by four underlying features: size, density, reciprocity, and the covariance between in- and outdegrees. Also, it is demonstrated that plotting conditional probability of ties, given the number of two-paths, provides valuable insights into empirical regularities and irregularities of transitivity patterns
    corecore