155 research outputs found

    The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat.

    Get PDF
    Human positive transcription elongation factor b (P-TEFb) phosphorylates RNA polymerase II and regulatory proteins to trigger elongation of many gene transcripts. The HIV-1 Tat protein selectively recruits P-TEFb as part of a super elongation complex (SEC) organized on a flexible AFF1 or AFF4 scaffold. To understand this specificity and determine if scaffold binding alters P-TEFb conformation, we determined the structure of a tripartite complex containing the recognition regions of P-TEFb and AFF4. AFF4 meanders over the surface of the P-TEFb cyclin T1 (CycT1) subunit but makes no stable contacts with the CDK9 kinase subunit. Interface mutations reduced CycT1 binding and AFF4-dependent transcription. AFF4 is positioned to make unexpected direct contacts with HIV Tat, and Tat enhances P-TEFb affinity for AFF4. These studies define the mechanism of scaffold recognition by P-TEFb and reveal an unanticipated intersubunit pocket on the AFF4 SEC that potentially represents a target for therapeutic intervention against HIV/AIDS. DOI:http://dx.doi.org/10.7554/eLife.00327.001

    Cyclic AMP Regulation of Protein Lysine Acetylation in Mycobacterium Tuberculosis

    Get PDF
    Protein lysine acetylation networks can regulate central processes such as carbon metabolism and gene expression in bacteria. In Escherichia coli, cyclic-AMP (cAMP) regulates protein lysine acetyltransferase (PAT) activity at the transcriptional level, but in Mycobacterium tuberculosis, fusion of a cyclic-nucleotide binding domain to a Gcn5-like PAT domain enables direct cAMP control of protein acetylation. Here we describe the allosteric activation mechanism of M. tuberculosis PAT. The crystal structures of the auto-inhibited and cAMP-activated PAT reveal that cAMP binds to a cryptic site in the regulatory domain over 32 Å from the catalytic site. An extensive conformational rearrangement relieves auto-inhibition by a substrate-mimicking lid that covers the protein-substrate binding surface. A steric double latch couples the domains by harnessing a classic, cAMP-mediated, conformational switch. The structures suggest general features that enable the evolution of long-range communication between linked domains

    Protein Complexes and Proteolytic Activation of the Cell Wall Hydrolase RipA Regulate Septal Resolution in Mycobacteria

    Get PDF
    Peptidoglycan hydrolases are a double-edged sword. They are required for normal cell division, but when dysregulated can become autolysins lethal to bacteria. How bacteria ensure that peptidoglycan hydrolases function only in the correct spatial and temporal context remains largely unknown. Here, we demonstrate that dysregulation converts the essential mycobacterial peptidoglycan hydrolase RipA to an autolysin that compromises cellular structural integrity. We find that mycobacteria control RipA activity through two interconnected levels of regulation in vivo—protein interactions coordinate PG hydrolysis, while proteolysis is necessary for RipA enzymatic activity. Dysregulation of RipA protein complexes by treatment with a peptidoglycan synthase inhibitor leads to excessive RipA activity and impairment of correct morphology. Furthermore, expression of a RipA dominant negative mutant or of differentially processed RipA homologues reveals that RipA is produced as a zymogen, requiring proteolytic processing for activity. The amount of RipA processing differs between fast-growing and slow-growing mycobacteria and correlates with the requirement for peptidoglycan hydrolase activity in these species. Together, the complex picture of RipA regulation is a part of a growing paradigm for careful control of cell wall hydrolysis by bacteria during growth, and may represent a novel target for chemotherapy development

    An atypical receiver domain controls the dynamic polar localization of the Myxococcus xanthus social motility protein FrzS

    Get PDF
    The Myxococcus xanthus FrzS protein transits from pole-to-pole within the cell, accumulating at the pole that defines the direction of movement in social (S) motility. Here we show using atomic-resolution crystallography and NMR that the FrzS receiver domain (RD) displays the conserved switch Tyr102 in an unusual conformation, lacks the conserved Asp phosphorylation site, and fails to bind Mg2+ or the phosphoryl analogue, Mg2+·BeF3. Mutation of Asp55, closest to the canonical site of RD phosphorylation, showed no motility phenotype in vivo, demonstrating that phosphorylation at this site is not necessary for domain function. In contrast, the Tyr102Ala and His92Phe substitutions on the canonical output face of the FrzS RD abolished S-motility in vivo. Single-cell fluorescence microscopy measurements revealed a striking mislocalization of these mutant FrzS proteins to the trailing cell pole in vivo. The crystal structures of the mutants suggested that the observed conformation of Tyr102 in the wild-type FrzS RD is not sufficient for function. These results support the model that FrzS contains a novel ‘pseudo-receiver domain’ whose function requires recognition of the RD output face but not Asp phosphorylation

    AIDS-related mycoses: the way forward.

    Get PDF
    The contribution of fungal infections to the morbidity and mortality of HIV-infected individuals is largely unrecognized. A recent meeting highlighted several priorities that need to be urgently addressed, including improved epidemiological surveillance, increased availability of existing diagnostics and drugs, more training in the field of medical mycology, and better funding for research and provision of treatment, particularly in developing countries

    Subfamily-Specific Adaptations in the Structures of Two Penicillin-Binding Proteins from Mycobacterium tuberculosis

    Get PDF
    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis

    BHPR research: qualitative1. Complex reasoning determines patients' perception of outcome following foot surgery in rheumatoid arhtritis

    Get PDF
    Background: Foot surgery is common in patients with RA but research into surgical outcomes is limited and conceptually flawed as current outcome measures lack face validity: to date no one has asked patients what is important to them. This study aimed to determine which factors are important to patients when evaluating the success of foot surgery in RA Methods: Semi structured interviews of RA patients who had undergone foot surgery were conducted and transcribed verbatim. Thematic analysis of interviews was conducted to explore issues that were important to patients. Results: 11 RA patients (9 ♂, mean age 59, dis dur = 22yrs, mean of 3 yrs post op) with mixed experiences of foot surgery were interviewed. Patients interpreted outcome in respect to a multitude of factors, frequently positive change in one aspect contrasted with negative opinions about another. Overall, four major themes emerged. Function: Functional ability & participation in valued activities were very important to patients. Walking ability was a key concern but patients interpreted levels of activity in light of other aspects of their disease, reflecting on change in functional ability more than overall level. Positive feelings of improved mobility were often moderated by negative self perception ("I mean, I still walk like a waddling duck”). Appearance: Appearance was important to almost all patients but perhaps the most complex theme of all. Physical appearance, foot shape, and footwear were closely interlinked, yet patients saw these as distinct separate concepts. Patients need to legitimize these feelings was clear and they frequently entered into a defensive repertoire ("it's not cosmetic surgery; it's something that's more important than that, you know?”). Clinician opinion: Surgeons' post operative evaluation of the procedure was very influential. The impact of this appraisal continued to affect patients' lasting impression irrespective of how the outcome compared to their initial goals ("when he'd done it ... he said that hasn't worked as good as he'd wanted to ... but the pain has gone”). Pain: Whilst pain was important to almost all patients, it appeared to be less important than the other themes. Pain was predominately raised when it influenced other themes, such as function; many still felt the need to legitimize their foot pain in order for health professionals to take it seriously ("in the end I went to my GP because it had happened a few times and I went to an orthopaedic surgeon who was quite dismissive of it, it was like what are you complaining about”). Conclusions: Patients interpret the outcome of foot surgery using a multitude of interrelated factors, particularly functional ability, appearance and surgeons' appraisal of the procedure. While pain was often noted, this appeared less important than other factors in the overall outcome of the surgery. Future research into foot surgery should incorporate the complexity of how patients determine their outcome Disclosure statement: All authors have declared no conflicts of interes

    Macro-to-Micro Structural Proteomics: Native Source Proteins for High-Throughput Crystallization

    Get PDF
    Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography
    corecore