3,460 research outputs found
GASP: Guitars with ambisonic spatial performance
‘Guitars with Ambisonic Spatial Performance’ (GASP) is an ongoing project where our expertise in surround sound algorithmic research is combined with off-the-shelf hardware and bespoke software to create a spatial multichannel surround guitar performance system. This poster was funded through the ‘Undergraduate Research Scholarship Scheme’ (URSS) and presented at the University of Derby Buxton Campus 10th Annual Learning & Teaching conference on Wednesday 1st July 2015. The theme being ‘Students as Partners: Linking Teaching, Research and Enterprise’. The poster was also utilised as a contribution to the Creative Technologies Research Group (CTRG) ‘Sounds in Space’ symposium held at the University of Derby in June 2015, at which three pieces of multichannel guitar recordings were demonstrated.‘Undergraduate Research Scholarship Scheme’ (URSS) University of Derb
Evading terror? Terror Attacks and Internal Migration in Israel
This paper empirically analyses the relationship between terror incidents and internal migration in Israel. Using a newly created database of region-to-region migration flows for the years 1998-2012, the empirical model regresses the annual flow of migrants from an origin subdistrict to a destination subdistrict on measures of terror incidents in the origin and the destination, respectively. The results indicate that terror in the destination subdistrict acts as a deterrent to migration into that region, whereas we find no evidence in support of the hypothesis that terror brings about outmigration
The spatial clustering of ultraluminous infrared galaxies over 1.5 < z < 3
We present measurements of the spatial clustering of galaxies with stellar masses 1011 M, infrared luminosities 1012 L, and star formation rates 200 M yr-1 in two redshift intervals: 1.5 < z < 2.0 and 2 < z < 3. Both samples cluster moderately strongly, with spatial correlation lengths of r0 = 6.14 B1 0.84 h-1 Mpc for the 2 < z < 3 sample and r0 = 5.36 B1 1.28 h-1 Mpc for the 1.5 < z < 2.0 sample. These clustering amplitudes are consistent with both populations residing in dark matter halos with masses of 7 C 1012 M, which is comparable to that seen for optical QSOs at the same epochs. We infer that a minimum dark matter halo mass is an important factor for all forms of luminous, obscured activity in galaxies at z > 1, both starbursts and active galactic nuclei. Adopting plausible models for the growth of dark matter halos with redshift, the halos hosting the 2 < z < 3 sample will likely host poor to rich clusters of galaxies at z = 0, whereas the halos hosting the 1.5 < z < 2.0 sample will likely host L* elliptical galaxies or poor clusters at z = 0. We conclude that ultraluminous infrared galaxies (ULIRGs) at z 2.5 likely signpost stellar buildup in galaxies that will reside in clusters at z = 0 and that ULIRGs at z 1.7 signpost stellar buildup in sources that will either become L* elliptical galaxies or reside in poor clusters at z = 0
Degradation and forgone removals increase the carbon impact of intact forest loss by 626%
Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate
Fabrication, characterisation and modelling of uniform and gradient auxetic foam sheets
Large sheets of polyurethane open-cell foam were compressed (or stretched) using pins and a conversion mould whilst undergoing thermal softening and controlled cooling. Sheets (final dimensions 355 x 344 x 20 mm) were fabricated with uniform triaxial compression, with and without through-thickness pins, and also with different compression regimes (uniform triaxial compression or through-thickness compression and biaxial planar tension) in opposing quadrants. The samples fabricated under uniform triaxial compression with and without pins exhibited similar cell structure and mechanical properties. The sheets fabricated with graded compression levels displayed clearly defined quadrants of differing cell structure and mechanical properties. The graded foam quadrants subject to triaxial compression displayed similar cell structure, tangent moduli and negative Poisson’s ratio responses to the uniform foams converted with a similar level of triaxial compression. The graded foam quadrants subject to through-thickness compression and biaxial planar tension displayed a slightly re-entrant through-thickness cell structure contrasting with an in-plane structure resembling the fully reticulated cell structure of the unconverted parent foam. This quadrant of graded foam displayed positive and negative Poisson’s ratios in tension and compression, respectively, accompanied by high and low in-plane tangent modulus, respectively. The strain-dependent mechanical properties are shown to be fully consistent with expectations from honeycomb theory. The triaxially compressed quadrants of the graded sheet exhibited ~4 times lower peak acceleration than quadrants with through-thickness compression and biaxial planar tension in 6 J impact tests using a steel hemispherical drop mass
Controlling density and modulus in auxetic foam fabrications—-implications for impact and indentation testing
Foams are commonly used for cushioning in protective sporting equipment. Volumetrically compressing open-cell polyurethane foam buckles cell ribs creating a re-entrant structure—set by heating then cooling—which can impart auxetic behaviour. Theoretically, auxetic materials improve impact protection by increasing indentation resistance and energy absorption, potentially reducing sporting injuries and burdens on individuals, health services and national economies. In previous work, auxetic foam exhibited ~3 to ~8 times lower peak force (compared to its conventional counterpart) under impacts adopted from tests used to certify protective sporting equipment. Increases to the foam’s density and changes to stress/strain relationships (from fabrication) mean Poisson’s ratio’s contribution to reduced peak forces under impact is unclear. This work presents a simple fabrication method for foam samples with comparable density and linear stress/strain relationship, but different Poisson’s ratios ranging between 0.1 and −0.3, an important step in assessing the Poisson’s ratio’s contribution to impact force attenuation
Fabrication of auxetic foam sheets for sports applications
Auxetic materials have a negative Poisson's ratio, which can enhance other properties. Greater indentation resistance and energy absorption, as well as synclastic curvature, could lend auxetic materials well to protective sports equipment and clothing. Sheets of foam often form padding within protective equipment, but producing large homogenous auxetic foam samples is challenging. The aim of this work was to investigate techniques to fabricate large thin sheets of auxetic foam, to facilitate future production and testing of prototype sports equipment utilizing this material. A mold was developed to fabricate sheets of auxetic foam − with planar dimensions measuring 350 × 350 mm − using the thermo-mechanical process. The mold utilized through-thickness rods to control lateral compression of foam. Sheets of auxetic foam measuring 10 × 350 × 350 mmd were fabricated and characterized. Each sheet was cut into nine segments, with density measurements used to determine how evenly the foam had been compressed during fabrication. Specimens cut from corner and centre segments were subject to quasi-static extension up to 30% to obtain stress versus strain relationships, with Digital Image Correlation used to determine Poisson's ratio. Specimens cut from the corner tended to have a marginally higher density, lower stiffness and more consistent negative Poisson's ratio compared to those from the centre, indicating some inconsistency in the conversion process. Future work could look to improve fabrication techniques for large thin homogenous sheets of auxetic foam
Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications
Angular clustering of galaxies at 3.6 microns from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey
We present the first analysis of large-scale clustering from the Spitzer Wide-area Infrared Extragalactic legacy survey (SWIRE). We compute the angular correlation function of galaxies selected to have 3.6 m fluxes brighter than 32 Jy in three fields totaling 2 deg2 in area. In each field we detect clustering with a high level of significance. The amplitude and slope of the correlation function is consistent between the three fields and is modeled as w() ¼ A1 with A ¼ (0:6 0:3) ; 10 3; ¼ 2:03 0:10. With a fixed slope of ¼ 1:8, we obtain an amplitude of A ¼ (1:7 0:1) ; 10 3. Assuming an equivalent depth of K 18:7 mag we find that our errors are smaller but our results are consistent with existing clustering measurements in K-band surveys and with stable clustering models. We estimate our median redshift z ’ 0:75, and this allows us to obtain an estimate of the three-dimensional correlation function (r), for which we find r0 ¼ 4:4 0:1 h 1 Mpc
- …
