122 research outputs found
The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI
The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to
deliver data at the Hat Creek Radio Observatory in Northern California.
Scientists and engineers are actively exploiting all of the flexibility
designed into this innovative instrument for simultaneously conducting surveys
of the astrophysical sky and conducting searches for distant technological
civilizations. This paper summarizes the design elements of the ATA, the cost
savings made possible by the use of COTS components, and the cost/performance
trades that eventually enabled this first snapshot radio camera. The
fundamental scientific program of this new telescope is varied and exciting;
some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio
Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres
Primary Beam and Dish Surface Characterization at the Allen Telescope Array by Radio Holography
The Allen Telescope Array (ATA) is a cm-wave interferometer in California,
comprising 42 antenna elements with 6-m diameter dishes. We characterize the
antenna optical accuracy using two-antenna interferometry and radio holography.
The distortion of each telescope relative to the average is small, with RMS
differences of 1 percent of beam peak value. Holography provides images of dish
illumination pattern, allowing characterization of as-built mirror surfaces.
The ATA dishes can experience mm-scale distortions across -2 meter lengths due
to mounting stresses or solar radiation. Experimental RMS errors are 0.7 mm at
night and 3 mm under worst case solar illumination. For frequencies 4, 10, and
15 GHz, the nighttime values indicate sensitivity losses of 1, 10 and 20
percent, respectively. The ATA.s exceptional wide-bandwidth permits
observations over a continuous range 0.5 to 11.2 GHz, and future retrofits may
increase this range to 15 GHz. Beam patterns show a slowly varying focus
frequency dependence. We probe the antenna optical gain and beam pattern
stability as a function of focus and observation frequency, concluding that ATA
can produce high fidelity images over a decade of simultaneous observation
frequencies. In the day, the antenna sensitivity and pointing accuracy are
affected. We find that at frequencies greater than 5 GHz, daytime observations
greater than 5 GHz will suffer some sensitivity loss and it may be necessary to
make antenna pointing corrections on a 1 to 2 hourly basis.Comment: 19 pages, 23 figures, 3 tables, Authors indicated by an double dagger
({\ddag}) are affiliated with the SETI Institute, Mountain View, CA 95070.
Authors indicated by a section break ({\S}) are affiliated with the Hat Creek
Radio Observatory and/or the Radio Astronomy Laboratory, both affiliated with
the University of California Berkeley, Berkeley C
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics
We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a
multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz.
The survey is designed to detect rare, very bright transients as well as to
verify the capabilities of the ATA to form large mosaics. The combined image
using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and
dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408
sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog
generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS),
a legacy survey at the same frequency, and find that we can measure source
positions to better than ~20 arcsec. For sources above the ATATS completeness
limit, the median flux density is 97% of the median value for matched NVSS
sources, indicative of an accurate overall flux calibration. We examine the
effects of source confusion due to the effects of differing resolution between
ATATS and NVSS on our ability to compare flux densities. We detect no
transients at flux densities greater than 40 mJy in comparison with NVSS, and
place a 2-sigma upper limit on the transient rate for such sources of 0.004 per
square degree. These results suggest that the > 1 Jy transients reported by
Matsumura et al. (2009) may not be true transients, but rather variable sources
at their flux density threshold.Comment: 41 pages, 19 figures, ApJ accepted; corrected minor typo in Table
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
Increasing access to music in SEN settings
This paper presents some of the outcomes of a one year Higher Education Innovation Fund1 funded project exam- ining the use of music technology to increase access to mu- sic for children within special educational need (SEN) set- tings. Despite the widely acknowledged benefits of inter- acting with music for children with SEN there are a num- ber of well documented barriers to access [1, 2, 3]. These barriers take a number of forms including financial, knowledge based or attitudinal. The aims of this project were to assess the current music technology provision in SEN schools within a particular part of the Dorset region, UK, determine the barriers they were facing and develop strategies to help the schools overcome these barriers. An overriding concern for this project was to leave the schools with lasting benefit and meaningful change. As such an Action Research [4] methodology was followed, which has at its heart an understanding of the participants as co- researchers helping ensure any solutions presented met the needs of the stakeholders. The presumption by the re- searchers was that the schools needed new technology to help overcome barriers. However, although technological solutions to problems were presented to the school, it was found that the main issues were around the flexibility of equipment to be used in different locations, staff time and staff attitudes to technology. These issues were addressed through the Action Research methodology to ensure that the technology designed worked for these particular use case scenario
Recommended from our members
Lake heatwaves under climate change
Lake ecosystems, and the organisms that live within them, are vulnerable to temperature change1,2,3,4,5, including the increased occurrence of thermal extremes6. However, very little is known about lake heatwaves—periods of extreme warm lake surface water temperature—and how they may change under global warming. Here we use satellite observations and a numerical model to investigate changes in lake heatwaves for hundreds of lakes worldwide from 1901 to 2099. We show that lake heatwaves will become hotter and longer by the end of the twenty-first century. For the high-greenhouse-gas-emission scenario (Representative Concentration Pathway (RCP) 8.5), the average intensity of lake heatwaves, defined relative to the historical period (1970 to 1999), will increase from 3.7 ± 0.1 to 5.4 ± 0.8 degrees Celsius and their average duration will increase dramatically from 7.7 ± 0.4 to 95.5 ± 35.3 days. In the low-greenhouse-gas-emission RCP 2.6 scenario, heatwave intensity and duration will increase to 4.0 ± 0.2 degrees Celsius and 27.0 ± 7.6 days, respectively. Surface heatwaves are longer-lasting but less intense in deeper lakes (up to 60 metres deep) than in shallower lakes during both historic and future periods. As lakes warm during the twenty-first century7,8, their heatwaves will begin to extend across multiple seasons, with some lakes reaching a permanent heatwave state. Lake heatwaves are likely to exacerbate the adverse effects of long-term warming in lakes and exert widespread influence on their physical structure and chemical properties. Lake heatwaves could alter species composition by pushing aquatic species and ecosystems to the limits of their resilience. This in turn could threaten lake biodiversity9 and the key ecological and economic benefits that lakes provide to society
Invasive annual grasses—Reenvisioning approaches in a changing climate
For nearly a century, invasive annual grasses have increasingly impacted terrestrial ecosystems across the western United States. Weather variability associated with climate change and increased atmospheric carbon dioxide (CO2) are making even more difficult the challenges of managing invasive annual grasses. As part of a special issue on climate change impacts on soil and water conservation, the topic of invasive annual grasses is being addressed by scientists at the USDA Agricultural Research Service to emphasize the need for additional research and future studies that build on current knowledge and account for (extreme) changes in abiotic and biotic conditions. Much research has focused on understanding the mechanisms underlying annual grass invasion, as well as assessing patterns and responses from a wide range of disturbances and management approaches. Weather extremes and the increasing occurrences of wildfire are contributing to the complexity of the problem. In broad terms, invasive annual grass management, including restoration, must be proactive to consider human values and ecosystem resiliency. Models capable of synthesizing vast amounts of diverse information are necessary for creating trajectories that could result in the establishment of perennial systems. Organization and collaboration are needed across the research community and with land managers to strategically develop and implement practices that limit invasive annual grasses. In the future, research will need to address invasive annual grasses in an adaptive integrated weed management (AIWM) framework that utilizes models and accounts for climate change that is resulting in altered/new approaches to management and restoration
Explorations, Vol. 5, No. 1
Articles include:
Cover: What Have We Done with Tomorrow? by Leslie C. Hyde, UMCES Extension Agent for Knox-Lincoln Counties.
Editorial Reflections, Carole J. Bombard
UMCES: an overview
Conversation with the Director: Assistant Vice-President Judith Bailey
Reaching Out for Teen Awareness, by Theresa M. Ferrari
Profile of a Harbormaster, by Carole J. Bombard
Minding Maine’s Business, by Mary S. Bowie
Family Resource Management: Learning to ease the burden, by Olive Dubord and Doris Cushman
Breaking Free and Taking Control: Helen Sawyer’s Story, by Doris Manley
Partnership in Conservation: The Josephine Newman Sanctuary, by Nancy Coverstone
The Mount Desert Island Health Promotion Project, by Ron Beard
Dynamics of Weed Control in Agriculture, by Leigh Morrow
From Generation to Generation: An Extension Homemaker Family, by Nadine B. Reimer
ICLAD: The Institute for Community Leadership and Development, by Jim Killacky and Deb Burwell
Exploding the Cinderella Syndrome: Strengthening Stepfamilies, by Wendy Pollock
Integrated Pest Management: Bringing it all together, by Glen Koehler and Jim Dill
Addressing the Issues, by Patricia M. Pierson
Anti-Bruise: What’s It All About? Maine Potato Harvest Anti-Bruise Program, by Neal D. Hallee
H.O.P.E. Addresses Teenage Pregnancy, by Jane M. Kelly
Saving Money and the Environment, by Vaughn H. Holyoke
Reservoir Tillage in Nonirrigated Potato Production, by Leigh Morrow
Managing Pesticide Drift, by James D. Dwyer, Leigh S. Morrow and James F. Dill
The St. George River Project — what have we done with tomorrow?
Putting Research to Work, by Stephen Belyea
The Best Maine Blue: Fresh Pack Blueberries, by Tom DeGomez
Maine’s Green Sea Urchin, by Benjamin A. Baxter
Interfaces and Cooperation: Wildlife and Fisheries Sampler, by Catherine A. Elliott
Extension Responds to the Salmonella Scare, by Nellie Hedstrom and Mahmoud El-Begearm
Recent Advances, Applications, and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2023 Symposium
The third ML4H symposium was held in person on December 10, 2023, in New
Orleans, Louisiana, USA. The symposium included research roundtable sessions to
foster discussions between participants and senior researchers on timely and
relevant topics for the \ac{ML4H} community. Encouraged by the successful
virtual roundtables in the previous year, we organized eleven in-person
roundtables and four virtual roundtables at ML4H 2022. The organization of the
research roundtables at the conference involved 17 Senior Chairs and 19 Junior
Chairs across 11 tables. Each roundtable session included invited senior chairs
(with substantial experience in the field), junior chairs (responsible for
facilitating the discussion), and attendees from diverse backgrounds with
interest in the session's topic. Herein we detail the organization process and
compile takeaways from these roundtable discussions, including recent advances,
applications, and open challenges for each topic. We conclude with a summary
and lessons learned across all roundtables. This document serves as a
comprehensive review paper, summarizing the recent advancements in machine
learning for healthcare as contributed by foremost researchers in the field.Comment: ML4H 2023, Research Roundtable
- …
