596 research outputs found

    Transportation of Mesenchymal Stem Cells for Clinical Applications

    Get PDF
    Cell‐processing procedures are conducted in accordance with Good Manufacturing Practices, and clinical procedures are performed by highly optimised methods. A high‐quality transportation system is essential for safe and effective handling of mesenchymal stem cells (MSCs) between cell‐processing and transplantation stages. For MSC transportation, either frozen cell or non‐frozen cell transportation is performed. There are many requirements for transporting a package by either type of transportation. In frozen cell transportation, some issues have yet to be resolved: the primary receptacle and cryoprotectant reagents. In non‐frozen cell transportation, control of cell metabolism and protection from environmental changes are more serious problems. Stabilisation of temperature, shock resistance, gas control, and an ultraviolet radiation (UVR) shielding technology should be considered. The transportation system should be established in compliance with the guidelines. Both development of a high‐quality transportation package and establishment of a high‐quality transportation system are important for the effective use of MSCs in clinical applications

    Development of a system for the assessment of a dual-task performance based on a motion-capture device

    Get PDF
    The authors produced a dual task (DT) that provided a dynamic balance task and a cognitive task in a game system using motion sensors and virtual images. There had been no DT where a cognitive task needs a dynamic balance task that requires full-body motions. We developed and evaluated a game system to assess the performance of the DT. The DT was to solve a Sudoku puzzle using full-body motions like Tái Chi. An ability to perform a DT is intimately related to risk of falls. To evaluate the developed system, we compared the performance of elderly people and young people. Generally, elderly people are at a higher risk of falls. Twenty elderly community-dwelling adults (mean age, 73.0±6.2 years) and 16 young adults (mean age, 21.8±1.0 years) participated in this study. To compare the two groups, we applied an independent-samples t-test. The time taken for the elderly people was 60.6±43.2 s, whereas the time taken for the young people was 16.0±4.8 s. The difference is statistically significant (p<0.05). This result suggests that the developed game system is useful for the evaluation of the DT performance

    A Strategy of Bone Regeneration for the Treatment of Idiopathic Femoral Head Necrosis

    Get PDF
    Femoral head necrosis (FHN) is a difficult disease to treat. FHN results from an obstruction in the blood supply to the femoral head, which causes death of the bone-forming cells. For effective treatment of FHN, an osteogenic cell supply, revascularization, and provision of initial strength to resist collapse are needed. Evidence of favorable outcomes of cell transplantation therapy for the treatment of FHN is emerging. However, outcomes of treatment are influenced by the underlying FHN etiology and clinical stage. Therefore, understanding the epidemiology, clinical stage, and disease status of FHN is essential to inform treatment planning based on evidence. The aim of the chapter is to present and critically discuss the role of cell replacement therapy for the treatment of FHN based on clinical status

    A Case of Successful Rehabilitation for Controlling Chronic Pain Following Osteonecrosis of the Femoral Head in a Young Adult Cancer Survivor

    Get PDF
    A 26-year-old woman previously treated for acute lymphoblastic leukemia (ALL) 14 years ago faced challenges in managing chronic pain resulting from right femoral head necrosis, a complication of her earlier ALL treatment. Ultimately, the persistent chronic pain was successfully treated via a comprehensive rehabilitation approach. The patient presented with hip contractures, muscle weakness, and reduced endurance without evident arthropathic changes or inflammatory findings in the femoral head. Active physiotherapy was implemented with the primary objective of increasing her social activity. This therapeutic intervention effectively managed the severe pain without the necessity for analgesic drugs, leading to a significant improvement in the patient's social activity. Recognizing the adolescent and young adult age group as a critical phase of physical, psychological, and social development, cancer survivors within this age group require multimodal care. This study highlights the role of stepwise rehabilitation treatments involving stretching, muscle strengthening, and endurance training, particularly in challenging cases of chronic pain. Post-treatment interviews revealed that successful experiences in each movement contributed to increased self-efficacy and promoted not only the control of chronic pain but also fostered improvements in social activities

    Increased recurrent falls experience in older adults with coexisting of sarcopenia and knee osteoarthritis: a cross-sectional study

    Get PDF
    Background: Sarcopenia and knee osteoarthritis (OA) are two major risk factors for falls in older adults. The coexistence of these two conditions may exacerbate the risk of falls. This cross-sectional study aimed to test the hypothesis that older adults with coexisting sarcopenia and knee OA displayed an increased risk of falls experience. Methods: Participants recruited from an orthopedic clinic were divided into four groups according to the presence of sarcopenia and radiographic knee OA: isolated sarcopenia, isolated knee OA, sarcopenia + knee OA, and control (i.e., non-sarcopenia with non-OA) groups. We used questionnaires to assess falls experience in the prior 12 months. We performed logistic regression analyses to evaluate the relationship between the four groups and falls experience. Results: Of 291 participants (age: 60-90 years, 78.7% women) included in this study, 25 (8.6%) had sarcopenia + knee OA. Participants with sarcopenia + knee OA had 4.17 times (95% confidence interval: 0.84, 20.6) higher odds of recurrent falls (≥2 falls) than controls after adjustment for age, sex, and body mass index. The increased recurrent falls experience was not clearly confirmed in participants with isolated sarcopenia and isolated knee OA. Conclusions: People with coexisting of sarcopenia and knee OA displayed increased recurrent falls experience. This study suggests a new concept, "sarcopenic knee OA", as a subgroup associated with higher risk of falls, which should be validated in future large cohort studies.Trial registration. Not applicable

    Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems

    Get PDF
    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32° C, 37° C, and 41° C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3- phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32° C and 37° C in pellet cultures, but the levels were significantly lower at 41° C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37° C than at 32° C and 41° C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32° C was maintained or enhanced compared to that at 37° C. However, chondrogenesis-related genes were further induced at 37° C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis

    Immature articular cartilage and subchondral bone covered by menisci are potentially susceptive to mechanical load

    Get PDF
    BACKGROUND: The differences of mechanical and histological properties between cartilage covered by menisci and uncovered by menisci may contribute to the osteoarthritis after meniscectomy and these differences are not fully understood. The purpose of this study is to investigate potential differences in the mechanical and histological properties, and in particular the collagen architecture, of the superficial cartilage layer and subchondral bone between regions covered and uncovered by menisci using immature knee. METHODS: Osteochondral plugs were obtained from porcine tibial cartilage that was either covered or uncovered by menisci. Investigation of the thickness, mechanical properties, histology, and water content of the cartilage as well as micro-computed tomography analysis of the subchondral bone was performed to compare these regions. Collagen architecture was also assessed by using scanning electron microscopy. RESULTS: Compared to the cartilage uncovered by menisci, that covered by menisci was thinner and showed a higher deformity to compression loading and higher water content. In the superficial layer of cartilage in the uncovered regions, collagen fibers showed high density, whereas they showed low density in covered regions. Furthermore, subchondral bone architecture varied between the 2 regions, and showed low bone density in covered regions. CONCLUSIONS: Cartilage covered by menisci differed from that uncovered in both its mechanical and histological properties, especially with regards to the density of the superficial collagen layer. These regional differences may be related to local mechanical environment in normal condition and indicate that cartilage covered by menisci is tightly guarded by menisci from extreme mechanical loading. Our results indicate that immature cartilage degeneration and subchondral microfracture may occur easily to extreme direct mechanical loading in covered region after meniscectomy

    Contributions of biarticular myogenic components to the limitation of the range of motion after immobilization of rat knee joint

    Get PDF
    BACKGROUND: Muscle atrophy caused by immobilization in the shortened position is characterized by a decrease in the size or cross-sectional area (CSA) of myofibers and decreased muscle length. Few studies have addressed the relationship between limitation of the range of motion (ROM) and the changes in CSA specifically in biarticular muscles after atrophy because of immobilization. We aimed to determine the contribution of 2 distinct muscle groups, the biarticular muscles of the post thigh (PT) and those of the post leg (PL), to the limitation of ROM as well as changes in the myofiber CSAs after joint immobilization surgery. METHODS: Male Wistar rats (n = 40) were randomly divided into experimental and control groups. In the experimental group, the left knee was surgically immobilized by external fixation for 1, 2, 4, 8, or 16 weeks (n = 5 each) and sham surgery was performed on the right knee. The rats in the control groups (n = 3 per time point) did not undergo surgery. After the indicated immobilization periods, myotomy of the PT or PL biarticular muscles was performed and the ROM was measured. The hamstrings and gastrocnemius muscles from the animals operated for 1 or 16 weeks were subjected to morphological analysis. RESULTS: In immobilized knees, the relative contribution of the PT biarticular myogenic components to the total restriction reached 80% throughout the first 4 weeks and decreased thereafter. The relative contribution of the PL biarticular myogenic components remained <20% throughout the immobilization period. The ratio of the myofiber CSA of the immobilized to that of the sham-operated knees was significantly lower at 16 weeks after surgery than at 1 week after surgery only in the hamstrings. CONCLUSIONS: The relative contribution of the PT and PL components to myogenic contracture did not significantly change during the experimental period. However, the ratio of hamstrings CSAs to the sham side was larger than the ratio of medial gastrocnemius CSAs to the sham side after complete atrophy because of immobilization

    Analysis of Molecular Changes and Features in Rat Knee Osteoarthritis Cartilage: Progress From Cellular Changes to Structural Damage

    Get PDF
    [Objective] Although knee osteoarthritis (KOA) is a common disease, there is a lack of specific prevention and early treatment methods. Hence, this study aimed to examine the molecular changes occurring at different stages of KOA to elucidate the dynamic nature of the disease. [Design] Using a low-force compression model and analyzing RNA sequencing data, we identified molecular changes in the transcriptome of knee joint cartilage, including gene expression and molecular pathways, between the cellular changes and structural damage stages of KOA progression. In addition, we validated hub genes using an external dataset. [Results] Gene set enrichment analysis (GSEA) identified the following pathways to be associated with KOA: “B-cell receptor signaling pathway, ” “cytokine-cytokine receptor interaction, ” and “hematopoietic cell lineage.” Expression analysis revealed 585 differentially expressed genes, with 579 downregulated and 6 upregulated genes. Enrichment and clustering analyses revealed that the main molecular clusters were involved in cell cycle regulation and immune responses. Furthermore, the hub genes Csf1r, Cxcr4, Cxcl12, and Ptprc were related to immune responses. [Conclusions] Our study provides insights into the dynamic nature of early-stage KOA and offers valuable information to support the development of effective intervention strategies to prevent the irreversible damage associated with KOA, thereby addressing a major clinical challenge
    corecore