553 research outputs found
Introduction to Voigt's wind power plant
The design and operation of a 100 kilowatt wind driven generator are reported. Its high speed three-bladed turbine operates at a height of 50 meters. Blades are rigidly connected to the hub and turbine revolutions change linearly with wind velocity, maintaining a constant speed ratio of blade tip velocity to wind velocity over the full predetermined wind range. Three generators installed in the gondola generate either dc or ac current. Based on local wind conditions, the device has a maximum output of 720 kilowatts at a wind velocity of 16 meters per second. Total electrical capacity is 750 kilowatts, and power output per year is 2,135,000 kilowatt/hours
Guided Proofreading of Automatic Segmentations for Connectomics
Automatic cell image segmentation methods in connectomics produce merge and
split errors, which require correction through proofreading. Previous research
has identified the visual search for these errors as the bottleneck in
interactive proofreading. To aid error correction, we develop two classifiers
that automatically recommend candidate merges and splits to the user. These
classifiers use a convolutional neural network (CNN) that has been trained with
errors in automatic segmentations against expert-labeled ground truth. Our
classifiers detect potentially-erroneous regions by considering a large context
region around a segmentation boundary. Corrections can then be performed by a
user with yes/no decisions, which reduces variation of information 7.5x faster
than previous proofreading methods. We also present a fully-automatic mode that
uses a probability threshold to make merge/split decisions. Extensive
experiments using the automatic approach and comparing performance of novice
and expert users demonstrate that our method performs favorably against
state-of-the-art proofreading methods on different connectomics datasets.Comment: Supplemental material available at
http://rhoana.org/guidedproofreading/supplemental.pd
Content-adaptive lenticular prints
Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study
- …
