944 research outputs found
Ge-Doped microstructured multicorefiber for customizable supercontinuum generation
Supercontinuum generation in a multicore fiber in which several uncoupled cores
were doped with dissimilar concentrations of germanium was studied experimentally.
Germanium doping provided control over the separation between the zero-dispersion
wavelength and the 1064-nm wavelength of a Q-switched Nd:YAG pump laser. Supercontinua
generated independently in each core of the same piece of fiber displayed clear
and repeatable differences due to the influence of germanium doping on refractive index and
four-wave mixing. The spectral evolution of the subnanosecond pump pulses injected into
the different cores was accurately reproduced by numerical simulations
Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration
We experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering
Spatiotemporal Characterization of Supercontinuum Extending from the Visible to the Mid-Infrared in Multimode Graded-Index Optical Fiber
We experimentally demonstrate that pumping a graded-index multimode fiber
with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat
supercontinuum generation with a uniform bell-shaped spatial beam profile
extending from the visible to the mid-infrared at 2500\,nm. We study the
development of the supercontinuum along the multimode fiber by the cut-back
method, which permits us to analyze the competition between the Kerr-induced
geometric parametric instability and stimulated Raman scattering. We also
performed a spectrally resolved temporal analysis of the supercontinuum
emission.Comment: 5 pages 7 figure
Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalistic emergentism
In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane's fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disordered state in 2- or 3-dimensional space. We propose this model in the context of neuronal dynamics and further hypothesize that it may involve quantum degrees of freedom dependent upon variation in membrane domains associated with ion channels or microtubules. Finally, we provide a link between these physical characteristics of the dynamical mechanism to psychiatric disorders such as major depression and antidepressant action
Designed Azolopyridinium Salts Block Protective Antigen Pores In Vitro and Protect Cells from Anthrax Toxin
Background:Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way.Methodology/Principal Findings:Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the μM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro.Conclusions/Significance:These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax. © 2013 Beitzinger et al
Resposta de cultivares de trigo à infestação do pulgão Rhopalosiphum padi.
O objetivo deste trabalho foi avaliar a resposta de oito cultivares comerciais de trigo (BRS 194, BRS 208, BRS Camboatá, BRS Guabiju, BRS Guamirim, BRS Louro, BRS Timbaúva e BRS Umbu) à infestação do pulgão Rhopalosiphum padi (Hemiptera: Aphididae). O experimento foi realizado na Embrapa Trigo, em telado, em blocos ao acaso, com oito tratamentos e seis repetições, dispostos em parcelas subdivididas. As parcelas principais receberam os tratamentos com e sem infestação de pulgões, e as subparcelas foram compostas pelas cultivares. A infestação com os pulgões (20 adultos ápteros por planta) foi realizada aos 12 dias após a emergência das plantas, quando se encontravam no início do afilhamento, e foi mantida durante 15 dias. As cultivares avaliadas responderam diferentemente à infestação do pulgão R. padi. A cultivar BRS Timbaúva é a mais resistente, e as cultivares BRS Umbu e BRS Guabiju são as mais suscetíveis ao pulgão, quanto ao crescimento e a capacidade produtiva de plantas
Control of near-infrared supercontinuum bandwidth by adjusting pump pulse duration
International audienceWe experimentally and numerically investigated the impact of input pump pulse duration on the near-infrared bandwidth of supercontinuum generation in a photonic crystal fiber. We continuously stretched the temporal duration of the input pump laser (centered at 1030 nm) pulses from 500 fs up to 10 ps, while keeping fixed the pump peak power. We observed that the long-wavelength edge of the supercontinuum spectrum is increased by 200 nm as the pump pulse duration grows from 500 fs to 10 ps. We provide a quantitative fit of the experimental results by means of numerical simulations. Moreover, we have explained the observed spectral broadening enhancement induced by pump pulse energy by developing an approximate yet fully analytical model for soliton energy exchange through a series of collisions in the presence of stimulated Raman scattering
Control of soliton collision-induced enhancement of supercontinuum bandwidth in photonic crystal fiber by variation of pump pulse duration
Identification of a novel zinc metalloprotease through a global analysis of clostridium difficile extracellular proteins
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis
- …
