7,762 research outputs found

    A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817

    Full text link
    The gamma-ray burst GRB 170817A associated with GW170817 is subluminous and subenergetic compared with other typical short GRBs. It may be due to a relativistic jet viewed off-axis, or a structured jet, or cocoon emission. Giant flares from magnetars may possibly be ruled out. However, the luminosity and energetics of GRB 170817A is coincident with that of magnetar giant flares. After the coalescence of the binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have magnetar-strength magnetic field. During the collapse of the hypermassive neutron star, the magnetic field energy will also be released. This giant-flare-like event may explain the the luminosity and energetics of GRB 170817A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.Comment: 6 pages, 1 figure, accepted in Research in Astronomy and Astrophysic

    Estimating coherence measures from limited experimental data available

    Full text link
    Quantifying coherence has received increasing attention, and considerable work has been directed towards finding coherence measures. While various coherence measures have been proposed in theory, an important issue following is how to estimate these coherence measures in experiments. This is a challenging task, since the state of a system is often unknown in practical applications and the accessible measurements in a real experiment are typically limited. In this Letter, we put forward an approach to estimate coherence measures of an unknown state from any limited experimental data available. Our approach is not only applicable to coherence measures but can be extended to other resource measures.Comment: 7 pages, 2 figure

    Measure-Independent Freezing of Quantum Coherence

    Full text link
    We find that all measures of coherence are frozen for an initial state in a strictly incoherent channel if and only if the relative entropy of coherence is frozen for the state. Our finding reveals the existence of measure-independent freezing of coherence, and provides an entropy-based dynamical condition in which the coherence of an open quantum system is totally unaffected by noise.Comment: 5 pages, no figures, accepted by Physical Review A as Rapid Communicatio

    Geometric vs. Dynamical Gates in Quantum Computing Implementations Using Zeeman and Heisenberg Hamiltonians

    Full text link
    Quantum computing in terms of geometric phases, i.e. Berry or Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its implementation based on Zeeman coupling with a rotating field and isotropic Heisenberg interaction, which describe NMR and can also be realized in quantum dots and cold atoms. Using a novel physical representation of the qubit basis states, we construct π/8\pi/8 and Hadamard gates based on Berry and Aharonov-Anandan phases. For two interacting qubits in a rotating field, we find that it is always impossible to construct a two-qubit gate based on Berry phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the two qubits are equal. In implementing a universal set of quantum gates, one may combine geometric π/8\pi/8 and Hadamard gates and dynamical SWAP\sqrt{\rm SWAP} gate.Comment: published version, 5 page

    Ordering states with coherence measures

    Full text link
    The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l1l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l1l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.Comment: 7 pages, 1 figur

    High-concentration Er:YAG single-crystal fibers grown by laser-heated pedestal growth technique

    Get PDF
    High-concentration Er:YAG single-crystal fibers have been grown using the laser-heated pedestal growth technique. Instability in the melt and concomitant opacity of fibers were observed at source concentrations higher than 15 mol.%. Spectroscopic examination shows that broadening of the linewidth of the I<sub>13/2</sub>4→I<sub>15/2</sub>4 transition is strongly dependent on Er<sup>3+</sup> concentration

    Enhanced squeezing with parity kicks

    Full text link
    Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.Comment: 4 pages, 2 figure

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS
    corecore