1,327 research outputs found

    A (2+1)-dimensional growth process with explicit stationary measures

    Full text link
    We introduce a class of (2+1)-dimensional stochastic growth processes, that can be seen as irreversible random dynamics of discrete interfaces. "Irreversible" means that the interface has an average non-zero drift. Interface configurations correspond to height functions of dimer coverings of the infinite hexagonal or square lattice. The model can also be viewed as an interacting driven particle system and in the totally asymmetric case the dynamics corresponds to an infinite collection of mutually interacting Hammersley processes. When the dynamical asymmetry parameter (pq)(p-q) equals zero, the infinite-volume Gibbs measures πρ\pi_\rho (with given slope ρ\rho) are stationary and reversible. When pqp\ne q, πρ\pi_\rho are not reversible any more but, remarkably, they are still stationary. In such stationary states, we find that the average height function at any given point xx grows linearly with time tt with a non-zero speed: EQx(t):=E(hx(t)hx(0))=V(ρ)t\mathbb E Q_x(t):=\mathbb E(h_x(t)-h_x(0))= V(\rho) t while the typical fluctuations of Qx(t)Q_x(t) are smaller than any power of tt as tt\to\infty. In the totally asymmetric case of p=0,q=1p=0,q=1 and on the hexagonal lattice, the dynamics coincides with the "anisotropic KPZ growth model" introduced by A. Borodin and P. L. Ferrari. For a suitably chosen, "integrable", initial condition (that is very far from the stationary state), they were able to determine the hydrodynamic limit and a CLT for interface fluctuations on scale logt\sqrt{\log t}, exploiting the fact that in that case certain space-time height correlations can be computed exactly.Comment: 37 pages, 13 figures. v3: some references added, introduction expanded, minor changes in the bul

    Dynamical arrest, tracer diffusion and Kinetically Constrained Lattice Gases

    Full text link
    We analyze the tagged particle diffusion for kinetically constrained models for glassy systems. We present a method, focusing on the Kob-Andersen model as an example, which allows to prove lower and upper bounds for the self diffusion coefficient DSD_S. This method leads to the exact density dependence of DSD_{S}, at high density, for models with finite defects and to prove diffusivity, DS>0D_{S}>0, at any finite density for highly cooperative models. A more general outcome is that under very general assumptions one can exclude that a dynamical transition, like the one predicted by the Mode-Coupling-Theory of glasses, takes place at a finite temperature/chemical potential for systems of interacting particles on a lattice.Comment: 28 pages, 4 figure

    Kinetically constrained spin models on trees

    Full text link
    We analyze kinetically constrained 0-1 spin models (KCSM) on rooted and unrooted trees of finite connectivity. We focus in particular on the class of Friedrickson-Andersen models FA-jf and on an oriented version of them. These tree models are particularly relevant in physics literature since some of them undergo an ergodicity breaking transition with the mixed first-second order character of the glass transition. Here we first identify the ergodicity regime and prove that the critical density for FA-jf and OFA-jf models coincide with that of a suitable bootstrap percolation model. Next we prove for the first time positivity of the spectral gap in the whole ergodic regime via a novel argument based on martingales ideas. Finally, we discuss how this new technique can be generalized to analyze KCSM on the regular lattice Zd\mathbb{Z}^d.Comment: Published in at http://dx.doi.org/10.1214/12-AAP891 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the critical point of the Random Walk Pinning Model in dimension d=3

    Full text link
    We consider the Random Walk Pinning Model studied in [3,2]: this is a random walk X on Z^d, whose law is modified by the exponential of \beta times L_N(X,Y), the collision local time up to time N with the (quenched) trajectory Y of another d-dimensional random walk. If \beta exceeds a certain critical value \beta_c, the two walks stick together for typical Y realizations (localized phase). A natural question is whether the disorder is relevant or not, that is whether the quenched and annealed systems have the same critical behavior. Birkner and Sun proved that \beta_c coincides with the critical point of the annealed Random Walk Pinning Model if the space dimension is d=1 or d=2, and that it differs from it in dimension d\ge4 (for d\ge 5, the result was proven also in [2]). Here, we consider the open case of the marginal dimension d=3, and we prove non-coincidence of the critical points.Comment: 23 pages; v2: added reference [4], where a result similar to Th. 2.8 is proven independently for the continuous-time mode

    Spiral Model: a cellular automaton with a discontinuous glass transition

    Full text link
    We introduce a new class of two-dimensional cellular automata with a bootstrap percolation-like dynamics. Each site can be either empty or occupied by a single particle and the dynamics follows a deterministic updating rule at discrete times which allows only emptying sites. We prove that the threshold density ρc\rho_c for convergence to a completely empty configuration is non trivial, 0<ρc<10<\rho_c<1, contrary to standard bootstrap percolation. Furthermore we prove that in the subcritical regime, ρ<ρc\rho<\rho_c, emptying always occurs exponentially fast and that ρc\rho_c coincides with the critical density for two-dimensional oriented site percolation on \bZ^2. This is known to occur also for some cellular automata with oriented rules for which the transition is continuous in the value of the asymptotic density and the crossover length determining finite size effects diverges as a power law when the critical density is approached from below. Instead for our model we prove that the transition is {\it discontinuous} and at the same time the crossover length diverges {\it faster than any power law}. The proofs of the discontinuity and the lower bound on the crossover length use a conjecture on the critical behaviour for oriented percolation. The latter is supported by several numerical simulations and by analytical (though non rigorous) works through renormalization techniques. Finally, we will discuss why, due to the peculiar {\it mixed critical/first order character} of this transition, the model is particularly relevant to study glassy and jamming transitions. Indeed, we will show that it leads to a dynamical glass transition for a Kinetically Constrained Spin Model. Most of the results that we present are the rigorous proofs of physical arguments developed in a joint work with D.S.Fisher.Comment: 42 pages, 11 figure

    Group Testing with Random Pools: optimal two-stage algorithms

    Full text link
    We study Probabilistic Group Testing of a set of N items each of which is defective with probability p. We focus on the double limit of small defect probability, p>1, taking either p->0 after NN\to\infty or p=1/Nβp=1/N^{\beta} with β(0,1/2)\beta\in(0,1/2). In both settings the optimal number of tests which are required to identify with certainty the defectives via a two-stage procedure, Tˉ(N,p)\bar T(N,p), is known to scale as NplogpNp|\log p|. Here we determine the sharp asymptotic value of Tˉ(N,p)/(Nplogp)\bar T(N,p)/(Np|\log p|) and construct a class of two-stage algorithms over which this optimal value is attained. This is done by choosing a proper bipartite regular graph (of tests and variable nodes) for the first stage of the detection. Furthermore we prove that this optimal value is also attained on average over a random bipartite graph where all variables have the same degree, while the tests have Poisson-distributed degrees. Finally, we improve the existing upper and lower bound for the optimal number of tests in the case p=1/Nβp=1/N^{\beta} with β[1/2,1)\beta\in[1/2,1).Comment: 12 page

    Hydrodynamic limit equation for a lozenge tiling Glauber dynamics

    Full text link
    We study a reversible continuous-time Markov dynamics on lozenge tilings of the plane, introduced by Luby et al. Single updates consist in concatenations of nn elementary lozenge rotations at adjacent vertices. The dynamics can also be seen as a reversible stochastic interface evolution. When the update rate is chosen proportional to 1/n1/n, the dynamics is known to enjoy especially nice features: a certain Hamming distance between configurations contracts with time on average and the relaxation time of the Markov chain is diffusive, growing like the square of the diameter of the system. Here, we present another remarkable feature of this dynamics, namely we derive, in the diffusive time scale, a fully explicit hydrodynamic limit equation for the height function (in the form of a non-linear parabolic PDE). While this equation cannot be written as a gradient flow w.r.t. a surface energy functional, it has nice analytic properties, for instance it contracts the L2\mathbb L^2 distance between solutions. The mobility coefficient μ\mu in the equation has non-trivial but explicit dependence on the interface slope and, interestingly, is directly related to the system's surface free energy. The derivation of the hydrodynamic limit is not fully rigorous, in that it relies on an unproven assumption of local equilibrium.Comment: 31 pages, 8 figures. v2: typos corrected, some proofs clarified. To appear on Annales Henri Poincar
    corecore