321 research outputs found

    Liouville field theory with heavy charges. II. The conformal boundary case

    Get PDF
    We develop a general technique for computing functional integrals with fixed area and boundary length constraints. The correct quantum dimensions for the vertex functions are recovered by properly regularizing the Green function. Explicit computation is given for the one point function providing the first one loop check of the bootstrap formula.Comment: LaTeX 26 page

    Occlusal traits in children with neurofibromatosis type 1

    Get PDF
    Literature is poor of data about the occlusion in children affected by neurofibromatosis type 1 (NF1). This case-control study investigated the occlusal traits in a group of children with NF1

    Bose-Fermi duality and entanglement entropies

    Full text link
    Entanglement (Renyi) entropies of spatial regions are a useful tool for characterizing the ground states of quantum field theories. In this paper we investigate the extent to which these are universal quantities for a given theory, and to which they distinguish different theories, by comparing the entanglement spectra of the massless Dirac fermion and the compact free boson in two dimensions. We show that the calculation of Renyi entropies via the replica trick for any orbifold theory includes a sum over orbifold twists on all cycles. In a modular-invariant theory of fermions, this amounts to a sum over spin structures. The result is that the Renyi entropies respect the standard Bose-Fermi duality. Next, we investigate the entanglement spectrum for the Dirac fermion without a sum over spin structures, and for the compact boson at the self-dual radius. These are not equivalent theories; nonetheless, we find that (1) their second Renyi entropies agree for any number of intervals, (2) their full entanglement spectra agree for two intervals, and (3) the spectrum generically disagrees otherwise. These results follow from the equality of the partition functions of the two theories on any Riemann surface with imaginary period matrix. We also exhibit a map between the operators of the theories that preserves scaling dimensions (but not spins), as well as OPEs and correlators of operators placed on the real line. All of these coincidences can be traced to the fact that the momentum lattice for the bosonized fermion is related to that of the self-dual boson by a 45 degree rotation that mixes left- and right-movers.Comment: 40 pages; v3: improvements to presentation, new section discussing entanglement negativit

    Holographic View on Quantum Correlations and Mutual Information between Disjoint Blocks of a Quantum Critical System

    Get PDF
    In (d+1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA) networks, tensors are connected so as to reproduce the discrete, (d + 2) holographic geometry of Anti de Sitter space (AdSd+2) with the original system lying at the boundary. We analyze the MERA renormalization flow that arises when computing the quantum correlations between two disjoint blocks of a quantum critical system, to show that the structure of the causal cones characteristic of MERA, requires a transition between two different regimes attainable by changing the ratio between the size and the separation of the two disjoint blocks. We argue that this transition in the MERA causal developments of the blocks may be easily accounted by an AdSd+2 black hole geometry when the mutual information is computed using the Ryu-Takayanagi formula. As an explicit example, we use a BTZ AdS3 black hole to compute the MI and the quantum correlations between two disjoint intervals of a one dimensional boundary critical system. Our results for this low dimensional system not only show the existence of a phase transition emerging when the conformal four point ratio reaches a critical value but also provide an intuitive entropic argument accounting for the source of this instability. We discuss the robustness of this transition when finite temperature and finite size effects are taken into account.Comment: 21 pages, 5 figures. Abstract and Figure 1 has been modified. Minor modifications in Section 1 and Section

    Modular Hamiltonians for the massless Dirac field in the presence of a boundary

    Get PDF
    We study the modular Hamiltonians of an interval for the massless Dirac fermion on the half-line. The most general boundary conditions ensuring the global energy conservation lead to consider two phases, where either the vector or the axial symmetry is preserved. In these two phases we derive the corresponding modular Hamiltonian in explicit form. Its density involves a bi-local term localised in two points of the interval, one conjugate to the other. The associated modular flows are also established. Depending on the phase, they mix fields with different chirality or charge that follow different modular trajectories. Accordingly, the modular flow preserves either the vector or the axial symmetry. We compute the two-point correlation functions along the modular flow and show that they satisfy the Kubo-Martin-Schwinger condition in both phases. The entanglement entropies are also derived

    Modular Hamiltonians for the massless Dirac field in the presence of a defect

    Get PDF
    We study the massless Dirac field on the line in the presence of a point-like defect characterised by a unitary scattering matrix, that allows both reflection and transmission. Considering this system in its ground state, we derive the modular Hamiltonians of the subregion given by the union of two disjoint equal intervals at the same distance from the defect. The absence of energy dissipation at the defect implies the existence of two phases, where either the vector or the axial symmetry is preserved. Besides a local term, the densities of the modular Hamiltonians contain also a sum of scattering dependent bi-local terms, which involve two conjugate points generated by the reflection and the transmission. The modular flows of each component of the Dirac field mix the trajectory passing through a given initial point with the ones passing through its reflected and transmitted conjugate points. We derive the two-point correlation functions along the modular flows in both phases and show that they satisfy the Kubo-Martin-Schwinger condition. The entanglement entropies are also computed, finding that they do not depend on the scattering matrix

    The D^{2k} R^4 Invariants of N=8 Supergravity

    Get PDF
    The existence of a linearized SUSY invariant for N=8 supergravity whose gravitational components are usually called R^4 was established long ago by on-shell superspace arguments. Superspace and string theory methods have also established analogous higher dimensional D^{2k} R^4 invariants. However, very little is known about the SUSY completions of these operators which involve other fields of the theory. In this paper we find the detailed component expansion of the linearized R^4 invariant starting from the corresponding superamplitude which generates all component matrix elements of the operator. It is then quite straightforward to extend results to the entire set of D^{2k} R^4 operators.Comment: 17 page

    Complexity of mixed Gaussian states from Fisher information geometry

    Get PDF
    We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices

    Subsystem complexity after a global quantum quench

    Get PDF
    We study the temporal evolution of the circuit complexity for a subsystem in harmonic lattices after a global quantum quench of the mass parameter, choosing the initial reduced density matrix as the reference state. Upper and lower bounds are derived for the temporal evolution of the complexity for the entire system. The subsystem complexity is evaluated by employing the Fisher information geometry for the covariance matrices. We discuss numerical results for the temporal evolutions of the subsystem complexity for a block of consecutive sites in harmonic chains with either periodic or Dirichlet boundary conditions, comparing them with the temporal evolutions of the entanglement entropy. For infinite harmonic chains, the asymptotic value of the subsystem complexity is studied through the generalised Gibbs ensemble

    Subsystem complexity after a local quantum quench

    Get PDF
    We study the temporal evolution of the circuit complexity after the local quench where two harmonic chains are suddenly joined, choosing the initial state as the reference state. We discuss numerical results for the complexity for the entire chain and the subsystem complexity for a block of consecutive sites, obtained by exploiting the Fisher information geometry of the covariance matrices. The qualitative behaviour of the temporal evolutions of the subsystem complexity depends on whether the joining point is inside the subsystem. The revivals and a logarithmic growth observed during these temporal evolutions are discussed. When the joining point is outside the subsystem, the temporal evolutions of the subsystem complexity and of the corresponding entanglement entropy are qualitatively similar
    corecore