321 research outputs found
Liouville field theory with heavy charges. II. The conformal boundary case
We develop a general technique for computing functional integrals with fixed
area and boundary length constraints. The correct quantum dimensions for the
vertex functions are recovered by properly regularizing the Green function.
Explicit computation is given for the one point function providing the first
one loop check of the bootstrap formula.Comment: LaTeX 26 page
Occlusal traits in children with neurofibromatosis type 1
Literature is poor of data about the occlusion in children affected by neurofibromatosis type 1 (NF1). This case-control study investigated the occlusal traits in a group of children with NF1
Bose-Fermi duality and entanglement entropies
Entanglement (Renyi) entropies of spatial regions are a useful tool for
characterizing the ground states of quantum field theories. In this paper we
investigate the extent to which these are universal quantities for a given
theory, and to which they distinguish different theories, by comparing the
entanglement spectra of the massless Dirac fermion and the compact free boson
in two dimensions. We show that the calculation of Renyi entropies via the
replica trick for any orbifold theory includes a sum over orbifold twists on
all cycles. In a modular-invariant theory of fermions, this amounts to a sum
over spin structures. The result is that the Renyi entropies respect the
standard Bose-Fermi duality. Next, we investigate the entanglement spectrum for
the Dirac fermion without a sum over spin structures, and for the compact boson
at the self-dual radius. These are not equivalent theories; nonetheless, we
find that (1) their second Renyi entropies agree for any number of intervals,
(2) their full entanglement spectra agree for two intervals, and (3) the
spectrum generically disagrees otherwise. These results follow from the
equality of the partition functions of the two theories on any Riemann surface
with imaginary period matrix. We also exhibit a map between the operators of
the theories that preserves scaling dimensions (but not spins), as well as OPEs
and correlators of operators placed on the real line. All of these coincidences
can be traced to the fact that the momentum lattice for the bosonized fermion
is related to that of the self-dual boson by a 45 degree rotation that mixes
left- and right-movers.Comment: 40 pages; v3: improvements to presentation, new section discussing
entanglement negativit
Holographic View on Quantum Correlations and Mutual Information between Disjoint Blocks of a Quantum Critical System
In (d+1) dimensional Multiscale Entanglement Renormalization Ansatz (MERA)
networks, tensors are connected so as to reproduce the discrete, (d + 2)
holographic geometry of Anti de Sitter space (AdSd+2) with the original system
lying at the boundary. We analyze the MERA renormalization flow that arises
when computing the quantum correlations between two disjoint blocks of a
quantum critical system, to show that the structure of the causal cones
characteristic of MERA, requires a transition between two different regimes
attainable by changing the ratio between the size and the separation of the two
disjoint blocks. We argue that this transition in the MERA causal developments
of the blocks may be easily accounted by an AdSd+2 black hole geometry when the
mutual information is computed using the Ryu-Takayanagi formula. As an explicit
example, we use a BTZ AdS3 black hole to compute the MI and the quantum
correlations between two disjoint intervals of a one dimensional boundary
critical system. Our results for this low dimensional system not only show the
existence of a phase transition emerging when the conformal four point ratio
reaches a critical value but also provide an intuitive entropic argument
accounting for the source of this instability. We discuss the robustness of
this transition when finite temperature and finite size effects are taken into
account.Comment: 21 pages, 5 figures. Abstract and Figure 1 has been modified. Minor
modifications in Section 1 and Section
Modular Hamiltonians for the massless Dirac field in the presence of a boundary
We study the modular Hamiltonians of an interval for the massless Dirac fermion on the half-line. The most general boundary conditions ensuring the global energy conservation lead to consider two phases, where either the vector or the axial symmetry is preserved. In these two phases we derive the corresponding modular Hamiltonian in explicit form. Its density involves a bi-local term localised in two points of the interval, one conjugate to the other. The associated modular flows are also established. Depending on the phase, they mix fields with different chirality or charge that follow different modular trajectories. Accordingly, the modular flow preserves either the vector or the axial symmetry. We compute the two-point correlation functions along the modular flow and show that they satisfy the Kubo-Martin-Schwinger condition in both phases. The entanglement entropies are also derived
Modular Hamiltonians for the massless Dirac field in the presence of a defect
We study the massless Dirac field on the line in the presence of a point-like defect characterised by a unitary scattering matrix, that allows both reflection and transmission. Considering this system in its ground state, we derive the modular Hamiltonians of the subregion given by the union of two disjoint equal intervals at the same distance from the defect. The absence of energy dissipation at the defect implies the existence of two phases, where either the vector or the axial symmetry is preserved. Besides a local term, the densities of the modular Hamiltonians contain also a sum of scattering dependent bi-local terms, which involve two conjugate points generated by the reflection and the transmission. The modular flows of each component of the Dirac field mix the trajectory passing through a given initial point with the ones passing through its reflected and transmitted conjugate points. We derive the two-point correlation functions along the modular flows in both phases and show that they satisfy the Kubo-Martin-Schwinger condition. The entanglement entropies are also computed, finding that they do not depend on the scattering matrix
The D^{2k} R^4 Invariants of N=8 Supergravity
The existence of a linearized SUSY invariant for N=8 supergravity whose
gravitational components are usually called R^4 was established long ago by
on-shell superspace arguments. Superspace and string theory methods have also
established analogous higher dimensional D^{2k} R^4 invariants. However, very
little is known about the SUSY completions of these operators which involve
other fields of the theory. In this paper we find the detailed component
expansion of the linearized R^4 invariant starting from the corresponding
superamplitude which generates all component matrix elements of the operator.
It is then quite straightforward to extend results to the entire set of D^{2k}
R^4 operators.Comment: 17 page
Complexity of mixed Gaussian states from Fisher information geometry
We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices
Subsystem complexity after a global quantum quench
We study the temporal evolution of the circuit complexity for a subsystem in harmonic lattices after a global quantum quench of the mass parameter, choosing the initial reduced density matrix as the reference state. Upper and lower bounds are derived for the temporal evolution of the complexity for the entire system. The subsystem complexity is evaluated by employing the Fisher information geometry for the covariance matrices. We discuss numerical results for the temporal evolutions of the subsystem complexity for a block of consecutive sites in harmonic chains with either periodic or Dirichlet boundary conditions, comparing them with the temporal evolutions of the entanglement entropy. For infinite harmonic chains, the asymptotic value of the subsystem complexity is studied through the generalised Gibbs ensemble
Subsystem complexity after a local quantum quench
We study the temporal evolution of the circuit complexity after the local quench where two harmonic chains are suddenly joined, choosing the initial state as the reference state. We discuss numerical results for the complexity for the entire chain and the subsystem complexity for a block of consecutive sites, obtained by exploiting the Fisher information geometry of the covariance matrices. The qualitative behaviour of the temporal evolutions of the subsystem complexity depends on whether the joining point is inside the subsystem. The revivals and a logarithmic growth observed during these temporal evolutions are discussed. When the joining point is outside the subsystem, the temporal evolutions of the subsystem complexity and of the corresponding entanglement entropy are qualitatively similar
- …
