1,314 research outputs found
Ternary Weakly Amenable C*-algebras and JB*-triples
A well known result of Haagerup from 1983 states that every C*-algebra A is
weakly amenable, that is, every (associative) derivation from A into its dual
is inner. A Banach algebra B is said to be ternary weakly amenable if every
continuous Jordan triple derivation from B into its dual is inner. We show that
commutative C*-algebras are ternary weakly amenable, but that B(H) and K(H) are
not, unless H is finite dimensional. More generally, we inaugurate the study of
weak amenability for Jordan Banach triples, focussing on commutative
JB*-triples and some Cartan factors.Comment: 34 pages, to appear in Quarterly Journal of Mathematic
Anisotropic Acoustic Plasmons in Black Phosphorus
Recently, it was demonstrated that a graphene/dielectric/metal configuration
can support acoustic plasmons, which exhibit extreme plasmon confinement an
order of magnitude higher than that of conventional graphene plasmons. Here, we
investigate acoustic plasmons supported in a monolayer and multilayers of black
phosphorus (BP) placed just a few nanometers above a conducting plate. In the
presence of a conducting plate, the acoustic plasmon dispersion for the
armchair direction is found to exhibit the characteristic linear scaling in the
mid- and far-infrared regime while it largely deviates from that in the long
wavelength limit and near-infrared regime. For the zigzag direction, such
scaling behavior is not evident due to relatively tighter plasmon confinement.
Further, we demonstrate a new design for an acoustic plasmon resonator that
exhibits higher plasmon confinement and resonance efficiency than BP ribbon
resonators in the mid-infrared and longer wavelength regime. Theoretical
framework and new resonator design studied here provide a practical route
toward the experimental verification of the acoustic plasmons in BP and open up
the possibility to develop novel plasmonic and optoelectronic devices that can
leverage its strong in-plane anisotropy and thickness-dependent band gap
Encapsulation of gases in powder solid matrices and their applications: A review
Gas encapsulation in solid matrices can be an important means to sequester harmful or greenhouse gases and to store useful gases for their subsequent release for a targeted application. In this review, recent developments, the characteristics and gas adsorption capacity of non-organic and organic solid powder matrices (e.g. activated carbons, carbon nanotubes, zeolites, metal-organic frameworks, and cyclodextrins); and potential applications of their complexes in various fields (energy, environment protection, nano-device production, medicine, and food and agriculture productions) are described
Non-reciprocal Wave Transmission In Integrated Waveguide Array Isolators
Non-reciprocal wave transmission is a phenomenon witnessed in certain photonic devices when the wave propagation dynamics through the device along one direction differs greatly from the dynamics along the counter-propagating direction. Specifically, it refers to significant power transfer occurring in one direction, and greatly reduced power transfer in the opposite direction. The resulting effect is to isolate the directionality of wave propagation, allowing transmission to occur along one direction only. Given the popularity of photonic integrated circuits (PIC), in which all the optical components are fabricated on the same chip so that the entire optical system can be made more compact, it is desirable to have an easily integrated optical isolator. Common free-space optical isolator designs, which rely on the Faraday effect, are limited by the availability of suitable magnetic materials. This research proposes a novel integrated optical isolator based on an array of closely spaced, identical waveguides. Because of the nonlinear optical properties of the material, this device exploits the differing behaviors of such an array when illuminated with either a high power or a low power beam to achieve non-reciprocal wave transmission in the forwards and backwards directions, respectively. The switching can be controlled electro-optically via an integrated gain section which provides optical amplification before the input to the array. The design, fabrication, characterization and testing of this optical isolator are covered in this dissertation. We study the switching dynamics of this device and present its optimum operating conditions
Determinants of personal exposure to fine particulate matter (PM2.5) adult subjects in Hong Kong
Personal monitoring for fine particulate matter (PM2.5) was conducted for adults (48 subjects, 18-63 years of age) in Hong Kong during the summer and winter of 2014-2015. All filters were analyzed for PM2.5 mass and constituents (including carbonaceous aerosols, water-soluble ions, and elements). We found that season (p = 0.02) and occupation (p < 0.001) were significant factors affecting the strength of the personal-ambient PM2.5 associations. We applied mixed-effects models to investigate the determinants of personal exposure to PM2.5 mass and constituents, along with within- and between-individual variance components. Ambient PM2.5 was the dominant predictor of (R-2 = 0.12-0.59, p < 0.01) and the largest contributor (>37.3%) to personal exposures for PM2.5 mass and most components. For all subjects, a one-unit (2.72 mu g/m(3)) increase in ambient PM2.5 was associated with a 0.75 mu g/m(3) (95% CI: 0.59-0.94 mu g/m(3)) increase in personal PM2.5 exposure. The adjusted mixed-effects models included information extracted from individual's activity diaries as covariates. The results showed that season, occupation, time indoors at home, in transit, and cleaning were significant determinants for PM2.5 components in personal exposure (R-beta(2) = 0.06-0.63, p < 0.05), contributing to 3.0-70.4% of the variability. For onehour extra time spent at home, in transit; and cleaning an average increase of 1.7-3.6% (ammonium, sulfate, nitrate, sulfur), 2.7-12.3% (elemental carbon, ammonium, titanium, iron), and 8.7-19.4% (ammonium, magnesium ions, vanadium) in components of personal PM2.5 were observed, respectively. In this research, the within-individual variance component dominated the total variability for all investigated exposure data except PM2.5 and EC. Results from this study indicate that performing long-term personal monitoring is needed for examining the associations of mass and constituents of personal PM2.5 with health outcomes in epidemiological studies by describing the impacts of individual-specific data on personal exposures. (C) 2018 Elsevier B.V. All rights reserved
Recommended from our members
Cathelicidin preserves intestinal barrier function in polymicrobial sepsis.
ObjectivesThe intestinal epithelium compartmentalizes the sterile bloodstream and the commensal bacteria in the gut. Accumulating evidence suggests that this barrier is impaired in sepsis, aggravating systemic inflammation. Previous studies reported that cathelicidin is differentially expressed in various tissues in sepsis. However, its role in sepsis-induced intestinal barrier dysfunction has not been investigated.DesignTo examine the role of cathelicidin in polymicrobial sepsis, cathelicidin wild-(Cnlp+/+) and knockout (Cnlp-/-) mice underwent cecal-ligation and puncture (CLP) followed by the assessment of septic mortality and morbidity as well as histological, biochemical, immunological, and transcriptomic analyses in the ileal tissues. We also evaluated the prophylactic and therapeutic efficacies of vitamin D3 (an inducer of endogenous cathelicidin) in the CLP-induced murine polymicrobial sepsis model.ResultsThe ileal expression of cathelicidin was increased by three-fold after CLP, peaking at 4 h. Knockout of Cnlp significantly increased 7-day mortality and was associated with a higher murine sepsis score. Alcian-blue staining revealed a reduced number of mucin-positive goblet cells, accompanied by reduced mucin expression. Increased number of apoptotic cells and cleavage of caspase-3 were observed. Cnlp deletion increased intestinal permeability to 4kD fluorescein-labeled dextran and reduced the expression of tight junction proteins claudin-1 and occludin. Notably, circulating bacterial DNA load increased more than two-fold. Transcriptome analysis revealed upregulation of cytokine/inflammatory pathway. Depletion of Cnlp induced more M1 macrophages and neutrophils compared with the wild-type mice after CLP. Mice pre-treated with cholecalciferol (an inactive form of vitamin D3) or treated with 1alpha, 25-dihydroxyvitamin D3 (an active form of VD3) had decreased 7-day mortality and significantly less severe symptoms. Intriguingly, the administration of cholecalciferol after CLP led to worsened 7-day mortality and the associated symptoms.ConclusionsEndogenous cathelicidin promotes intestinal barrier integrity accompanied by modulating the infiltration of neutrophils and macrophages in polymicrobial sepsis. Our data suggested that 1alpha, 25-dihydroxyvitamin D3 but not cholecalciferol is a potential therapeutic agent for treating sepsis
Astrometry with the Wide-Field InfraRed Space Telescope
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of
delivering precise astrometry for faint sources over the enormous field of view
of its main camera, the Wide-Field Imager (WFI). This unprecedented combination
will be transformative for the many scientific questions that require precise
positions, distances, and velocities of stars. We describe the expectations for
the astrometric precision of the WFIRST WFI in different scenarios, illustrate
how a broad range of science cases will see significant advances with such
data, and identify aspects of WFIRST's design where small adjustments could
greatly improve its power as an astrometric instrument.Comment: version accepted to JATI
A Survey of PCN-Based Admission Control and Flow Termination
Pre-congestion notification (PCN) provides feedback\ud
about load conditions in a network to its boundary nodes. The PCN working group of the IETF discusses the use of PCN to implement admission control (AC) and flow termination (FT) for prioritized realtime traffic in a DiffServ domain. Admission control (AC) is a well-known flow control function that blocks admission requests of new flows when they need to be carried over a link whose admitted PCN rate already exceeds an admissible rate. Flow termination (FT) is a new flow control function that terminates some already admitted flows when they are carried over a link whose admitted PCN rate exceeds a supportable rate. The latter condition can occur in spite of AC, e.g., when traffic is rerouted due to network failures.\ud
This survey gives an introduction to PCN and is a primer for\ud
this new technology. It presents and discusses the multitude of architectural design options in an early stage of the standardization process in a comprehensive and streamlined way before only a subset of them is standardized by the IETF. It brings PCN from the IETF to the research community and serves as historical record
- …
