53 research outputs found

    Propensity for Diabetes and Correlation of its Predisposing Factors in Ota, Nigeria.

    Get PDF
    Body Mass Index (BME) and Random Blood Glucose (RBG) are considered important predisposing factors for type 2 diabetes mellitus in adults. This study assessed the propensity to become diabetic based on the relationship between Body Mass Index (BME), Random Blood Glucose (RBG), gender and age in a community in South west Nigeria. The study included a convenient sample size of 140 healthy adult individuals who met the inclusion criteria. Anthropometric indices including height and weight were measured and Blood samples analyzed for random blood glucose. A significant positive correlation was observed (r = +0.32) between BME and RBG in females while there was no correlation in the males (r = -0.05). The males were found to be less likely to be diabetic than the females. The relationship between age and RBG was significantly positive in both males and females. The study confirms the hypothesis that a positive correlation exist between BME and RBG but only in women. This suggests that other causes including sex could predispose to diabetes and reiterates the diabetogenic effect of adiposity

    Identification of Stage-Specific Breast Markers using Quantitative Proteomics

    Get PDF
    YesMatched healthy and diseased tissues from breast cancer patients were analyzed by quantitative proteomics. By comparing proteomic profiles of fibroadenoma (benign tumors, three patients), DCIS (noninvasive cancer, three patients), and invasive ductal carcinoma (four patients), we identified protein alterations that correlated with breast cancer progression. Three 8-plex iTRAQ experiments generated an average of 826 protein identifications, of which 402 were common. After excluding those originating from blood, 59 proteins were significantly changed in tumor compared with normal tissues, with the majority associated with invasive carcinomas. Bioinformatics analysis identified relationships between proteins in this subset including roles in redox regulation, lipid transport, protein folding, and proteasomal degradation, with a substantial number increased in expression due to Myc oncogene activation. Three target proteins, cofilin-1 and p23 (increased in invasive carcinoma) and membrane copper amine oxidase 3 (decreased in invasive carcinoma), were subjected to further validation. All three were observed in phenotype-specific breast cancer cell lines, normal (nontransformed) breast cell lines, and primary breast epithelial cells by Western blotting, but only cofilin-1 and p23 were detected by multiple reaction monitoring mass spectrometry analysis. All three proteins were detected by both analytical approaches in matched tissue biopsies emulating the response observed with proteomics analysis. Tissue microarray analysis (361 patients) indicated cofilin-1 staining positively correlating with tumor grade and p23 staining with ER positive status; both therefore merit further investigation as potential biomarkers.Cyprus Research Promotion Foundation, Yorkshire Cancer Researc

    Propensity for diabetes and correlation of its predisposing factors in Ota, Nigeria.

    Get PDF
    Body Mass Index (BMI) and Random Blood Glucose (RBG) are considered important predisposing factors for type 2 diabetes mellitus in adults. This study assessed the propensity to become diabetic based on the relationship between Body Mass Index (BMI), Random Blood Glucose (RBG), gender and age in a community in South west Nigeria. The study included a convenient sample size of 140 healthy adult individuals who met the inclusion criteria. Anthropometric indices including height and weight were measured and Blood samples analyzed for random blood glucose. A significant positive correlation was observed (r = +0.32) between BMI and RBG in females while there was no correlation in the males (r = -0.05). The males were found to be less likely to be diabetic than the females. The relationship between age and RBG was significantly positive in both males and females. The study confirms the hypothesis that a positive correlation exist between BMI and RBG but only in women. This suggests that other causes including sex could predispose to diabetes and reiterates the diabetogenic effect of adiposity

    Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system

    Get PDF
    Hepadnaviruses are DNA viruses that replicate by protein-primed reverse transcription, employing a specialized reverse transcriptase (RT), P protein. DNA synthesis from the pregenomic RNA is initiated by binding of P to the ε signal. Using ε as template and a Tyr-residue for initiation, the RT synthesizes a DNA oligo (priming) as primer for full-length DNA. Priming strictly requires prior RT activation by chaperones. Active P–ε complexes have been reconstituted in vitro, but whether in addition to the heat-shock protein 70 (Hsp70) system the Hsp90 system is essential has been controversial. Here we quantitatively compared Hsp70 versus Hsp70 plus Hsp90 RT activation, and corroborated that the Hsp70 system alone is sufficient; however, Hsp90 as well the Hsp70 nucleotide exchange factor Bag-1 markedly stimulated activation by increasing the steady-state concentration of the activated metastable RT form P*, though by different mechanisms. Hsp90 inhibition in intact cells by geldanamycin analogs blocked hepadnavirus replication, however not completely and only at severely cytotoxic inhibitor concentrations. While compatible with a basal level of Hsp90 independent in vivo replication, unambiguous statements are precluded by the simultaneous massive upregulation of Hsp70 and Hsp90

    Detection of changes in gene regulatory patterns, elicited by perturbations of the Hsp90 molecular chaperone complex, by visualizing multiple experiments with an animation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To make sense out of gene expression profiles, such analyses must be pushed beyond the mere listing of affected genes. For example, if a group of genes persistently display similar changes in expression levels under particular experimental conditions, and the proteins encoded by these genes interact and function in the same cellular compartments, this could be taken as very strong indicators for co-regulated protein complexes. One of the key requirements is having appropriate tools to detect such regulatory patterns.</p> <p>Results</p> <p>We have analyzed the global adaptations in gene expression patterns in the budding yeast when the Hsp90 molecular chaperone complex is perturbed either pharmacologically or genetically. We integrated these results with publicly accessible expression, protein-protein interaction and intracellular localization data. But most importantly, all experimental conditions were simultaneously and dynamically visualized with an animation. This critically facilitated the detection of patterns of gene expression changes that suggested underlying regulatory networks that a standard analysis by pairwise comparison and clustering could not have revealed.</p> <p>Conclusions</p> <p>The results of the animation-assisted detection of changes in gene regulatory patterns make predictions about the potential roles of Hsp90 and its co-chaperone p23 in regulating whole sets of genes. The simultaneous dynamic visualization of microarray experiments, represented in networks built by integrating one's own experimental with publicly accessible data, represents a powerful discovery tool that allows the generation of new interpretations and hypotheses.</p

    The Hsp90 Molecular Chaperone Modulates Multiple Telomerase Activities▿

    No full text
    The Hsp90 molecular chaperone is a highly abundant eukaryotic molecular chaperone. While it is understood that Hsp90 modulates a significant number of proteins, the mechanistic contributions made by Hsp90 to a client protein typically are not well understood. Here we investigate the yeast Hsp90 regulatory roles with telomerase. Telomerase lengthens chromosome termini by specifically associating with single-stranded telomeric DNA and appending nucleotides by reverse transcription. We have found that the yeast Hsp90 homolog Hsp82p promotes both telomerase DNA binding and nucleotide addition properties. By isolating telomerase from different allelic backgrounds we observed distinct defects. For example, in an hsp82 T101I strain telomerase displayed decreased nucleotide processivity, whereas both DNA binding and extension activities were lowered in a G170D background. The decline in telomerase DNA binding correlated with a loss of Hsp82p association. No matter the defect, telomerase activity was recovered upon Hsp82p addition. Importantly, telomere length and telomerase telomere occupancy was yeast Hsp90 dependent. Taken together, our results indicate that Hsp82p promotes telomerase DNA association and facilitates DNA extension once telomerase is engaged with the DNA

    The p23 Molecular Chaperone and GCN5 Acetylase Jointly Modulate Protein-DNA Dynamics and Open Chromatin Status

    Full text link
    Cellular processes function through multi-step pathways that are reliant on the controlled association and disassociation of sequential protein complexes. While dynamic action is critical to propagate and terminate work, the mechanisms used to disassemble biological structures are not fully understood. Here, we show that the p23 molecular chaperone initiates disassembly of protein-DNA complexes and that the GCN5 acetyltransferase prolongs the dissociated state through lysine acetylation. By modulating the DNA bound-state, we found that the conserved and essential joint activities of p23 and GCN5 impacted transcription factor activation potential and response time to an environmental cue. Notably, p23 and GCN5 were required to maintain open chromatin regions along the genome indicating that dynamic protein behavior is a critical feature of various DNA-associated events. Our data support a model in which p23 and GCN5 regulate diverse multi-step pathways by controlling the longevity of protein-DNA complexes
    corecore