674 research outputs found
Channel Capacities of an Exactly Solvable Spin-Star System
We calculate the entanglement-assisted and unassisted channel capacities of
an exactly solvable spin star system, which models the quantum dephasing
channel. The capacities for this non-Markovian model exhibit a strong
dependence on the coupling strengths of the bath spins with the system, the
bath temperature, and the number of bath spins. For equal couplings and bath
frequencies, the channel becomes periodically noiseless.Comment: 8 pages, 5 figure
Dilemma and Quantum Battle of Sexes
We analysed quantum version of the game battle of sexes using a general
initial quantum state. For a particular choice of initial entangled quantum
state it is shown that the classical dilemma of the battle of sexes can be
resolved and a unique solution of the game can be obtained.Comment: Revised, Latex, 9 pages, no figure, corresponding author's email:
[email protected]
ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21
ROSAT HRI observations have been used to determine an upper limit of the Crab
pulsar surface temperature from the off-pulse count rate. For a neutron star
mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and
interstellar column density, the redshifted temperature upper limit is\/
K . This is the lowest temperature
upper limit obtained for the Crab pulsar so far. Slightly different values for
are computed for the various neutron star models available in the
literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of
the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A.
Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )
Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena
This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place
Revival-collapse phenomenon in the fluctuations of quadrature field components of the multiphoton Jaynes-Cummings model
In this paper we consider a system consisting of a two-level atom, initially
prepared in a coherent superposition of upper and lower levels, interacting
with a radiation field prepared in generalized quantum states in the framework
of multiphoton Jaynes-Cummings model. For this system we show that there is a
class of states for which the fluctuation factors can exhibit revival-collapse
phenomenon (RCP) similar to that exhibited in the corresponding atomic
inversion. This is shown not only for normal fluctuations but also for
amplitude-squared fluctuations. Furthermore, apart from this class of states we
generally demonstrate that the fluctuation factors associated with three-photon
transition can provide RCP similar to that occurring in the atomic inversion of
the one-photon transition. These are novel results and their consequence is
that RCP occurred in the atomic inversion can be measured via a homodyne
detector. Furthermore, we discuss the influence of the atomic relative phases
on such phenomenon.Comment: 17 pages, 4 figure
Suzaku broad-band spectroscopy of RX J1347.5-1145: constraints on the extremely hot gas and non-thermal emission
We present the results from the analysis of long Suzaku observations of the
most X-ray luminous galaxy cluster RX J1347.5-1145 at z=0.451. Aims: We study
physical properties of the hot (~20 keV) gas clump in the south-east (SE)
region discovered by the Sunyaev-Zel'dovich (SZ) effect observations, to
understand the gas physics of a violent cluster merger. We also explore a
signature of non-thermal emission using the hard X-ray data. Results: We find
that the single-temperature model fails to reproduce the continuum emission and
Fe-K lines measured by XIS simultaneously. The two-temperature model with a
very hot component improves the fit, although the XIS data can only give a
lower bound on its temperature. We detect the hard X-ray emission in the 12-40
keV band at the 7 sigma level; however, the significance becomes marginal when
the systematic error in the background estimation is included. With the Suzaku
+ Chandra joint analysis, we determine the temperature of the SE excess
component to be 25.3^{+6.1}_{-4.5} ^{+6.9}_{-9.5} keV (90% statistical and
systematic errors), which is in an excellent agreement with the previous SZ +
X-ray analysis. This is the first time that the X-ray spectroscopy alone gives
a good measurement of the temperature of the hot component in the SE region,
which is made possible by Suzaku's unprecedented sensitivity to the wide X-ray
band. These results strongly indicate that the cluster has undergone a recent,
violent merger. The spectral analysis shows that the SE component is consistent
with being thermal. We find the 3 sigma upper limit on the non-thermal flux, F
< 8e-12 erg s^{-1} cm^{-2} in the 12-60 keV band. Combining this limit with a
recent discovery of the radio mini halo at 1.4 GHz, we find a lower limit on
the strength of the intracluster magnetic field, B > 0.007 micro G.Comment: 15 pages, 13 figures. Accepted for publication in A&
Multiorder coherent Raman scattering of a quantum probe field
We study the multiorder coherent Raman scattering of a quantum probe field in
a far-off-resonance medium with a prepared coherence. Under the conditions of
negligible dispersion and limited bandwidth, we derive a Bessel-function
solution for the sideband field operators. We analytically and numerically
calculate various quantum statistical characteristics of the sideband fields.
We show that the multiorder coherent Raman process can replicate the
statistical properties of a single-mode quantum probe field into a broad comb
of generated Raman sidebands. We also study the mixing and modulation of photon
statistical properties in the case of two-mode input. We show that the prepared
Raman coherence and the medium length can be used as control parameters to
switch a sideband field from one type of photon statistics to another type, or
from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Traces of past activity in the Galactic Centre
The Milky Way centre hosts a supermassive Black Hole (BH) with a mass of
~4*10^6 M_Sun. Sgr A*, its electromagnetic counterpart, currently appears as an
extremely weak source with a luminosity L~10^-9 L_Edd. The lowest known
Eddington ratio BH. However, it was not always so; traces of "glorious" active
periods can be found in the surrounding medium. We review here our current view
of the X-ray emission from the Galactic Center (GC) and its environment, and
the expected signatures (e.g. X-ray reflection) of a past flare. We discuss the
history of Sgr A*'s past activity and its impact on the surrounding medium. The
structure of the Central Molecular Zone (CMZ) has not changed significantly
since the last active phase of Sgr A*. This relic torus provides us with the
opportunity to image the structure of an AGN torus in exquisite detail.Comment: Invited refereed review. Chapter of the book: "Cosmic ray induced
phenomenology in star forming environments" (eds. Olaf Reimer and Diego F.
Torres
International multi-party projects: the importance of negotiating process in cross-border contractual relationships
- …
