156 research outputs found
New near-IR observations of mesospheric CO2 and H2O clouds on Mars
Carbon dioxide clouds, which are speculated by models on solar and
extra-solar planets, have been recently observed near the equator of Mars. The
most comprehensive identification of Martian CO2 ice clouds has been obtained
by the near-IR imaging spectrometer OMEGA. CRISM, a similar instrument with a
higher spatial resolution, cannot detect these clouds with the same method due
to its shorter wavelength range. Here we present a new method to detect CO2
clouds using near-IR data based on the comparison of H2O and CO2 ice spectral
properties. The spatial and seasonal distributions of 54 CRISM observations
containing CO2 clouds are reported, in addition to 17 new OMEGA observations.
CRISM CO2 clouds are characterized by grain size in the 0.5-2\mum range and
optical depths lower than 0.3. The distributions of CO2 clouds inferred from
OMEGA and CRISM are consistent with each other and match at first order the
distribution of high altitude (>60km) clouds derived from previous studies. At
second order, discrepancies are observed. We report the identification of H2O
clouds extending up to 80 km altitude, which could explain part of these
discrepancies: both CO2 and H2O clouds can exist at high, mesospheric
altitudes. CRISM observations of afternoon CO2 clouds display morphologies
resembling terrestrial cirrus, which generalizes a previous result to the whole
equatorial clouds season. Finally, we show that morning OMEGA observations have
been previously misinterpreted as evidence for cumuliform, and hence
potentially convective, CO2 clouds.Comment: Vincendon, M., C. Pilorget, B. Gondet, S. Murchie, and J.-P. Bibring
(2011), New near-IR observations of mesospheric CO2 and H2O clouds on Mars,
J. Geophys. Res., 116, E00J0
The effect of the regular solution model in the condensation of protoplanetary dust
We utilize a chemical equilibrium code in order to study the condensation
process which occurs in protoplanetary discs during the formation of the first
solids. The model specifically focuses on the thermodynamic behaviour on the
solid species assuming the regular solution model. For each solution, we
establish the relationship between the activity of the species, the composition
and the temperature using experimental data from the literature. We then apply
the Gibbs free energy minimization method and study the resulting condensation
sequence for a range of temperatures and pressures within a protoplanetary
disc. Our results using the regular solution model show that grains condense
over a large temperature range and therefore throughout a large portion of the
disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and
the formation of corundum is sensitive to the pressure. The mid-temperature
region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The
chemistry of forsterite and enstatite are strictly related, and our simulations
show a sequence of forsterite-enstatite-forsterite with decreasing temperature.
In the low temperature regions (T < 600 K) a range of iron compounds and
sulfides form. We also run simulations using the ideal solution model and see
clear differences in the resulting condensation sequences with changing
solution model In particular, we find that the turning point in which
forsterite replaces enstatite in the low temperature region is sensitive to the
solution model. Our results show that the ideal solution model is often a poor
approximation to experimental data at most temperatures important in
protoplanetary discs. We find some important differences in the resulting
condensation sequences when using the regular solution model, and suggest that
this model should provide a more realistic condensation sequence.Comment: MNRAS: Accepted 2011 February 16. Received 2011 February 14; in
original form 2010 July 2
Novel Experimental Simulations of the Atmospheric Injection of Meteoric Metals
A newly developed laboratory, Meteoric Ablation Simulator (MASI), is used to test model predictions of the atmospheric ablation of interplanetary dust particles (IDPs) with experimental Na, Fe, and Ca vaporization profiles. MASI is the first laboratory setup capable of performing time-resolved atmospheric ablation simulations, by means of precision resistive heating and atomic laser-induced fluorescence detection. Experiments using meteoritic IDP analogues show that at least three mineral phases (Na-rich plagioclase, metal sulfide, and Mg-rich silicate) are required to explain the observed appearance temperatures of the vaporized elements. Low melting temperatures of Na-rich plagioclase and metal sulfide, compared to silicate grains, preclude equilibration of all the elemental constituents in a single melt. The phase-change process of distinct mineral components determines the way in which Na and Fe evaporate. Ca evaporation is dependent on particle size and on the initial composition of the molten silicate. Measured vaporized fractions of Na, Fe, and Ca as a function of particle size and speed confirm differential ablation (i.e., the most volatile elements such as Na ablate first, followed by the main constituents Fe, Mg, and Si, and finally the most refractory elements such as Ca). The Chemical Ablation Model (CABMOD) provides a reasonable approximation to this effect based on chemical fractionation of a molten silicate in thermodynamic equilibrium, even though the compositional and geometric description of IDPs is simplistic. Improvements in the model are required in order to better reproduce the specific shape of the elemental ablation profiles
Recommended from our members
Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return
NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs
Multiscale correlated analysis of the Aguas Zarcas CM chondrite
In this paper, we report the results of a campaign of measurements on four fragments of the CM Aguas Zarcas (AZ) meteorite, combining X‐ray computed tomography analysis and Fourier‐transform infrared (FT‐IR) spectroscopy. We estimated a petrologic type for our sampled CM lithology using the two independent techniques, and obtained a type CM2.5, in agreement with previous estimations. By comparing the Si‐O 10‐µm signature of the AZ average FT‐IR spectra with other well‐studied CMs, we place AZ in the context of aqueous alteration of CM parent bodies. Morphological characterization reveals that AZ has heterogeneous distribution of pores and a global porosity of 4.5 ± 0.5 vol%. We show that chondrules have a porosity of 6.3 ± 1 vol%. This larger porosity could be inherited due to various processes such as temperature variation during the chondrule formation and shocks or dissolution during aqueous alteration. Finally, we observed a correlation between 3D distributions of organic matter and mineral at micrometric scales, revealing a link between the abundance of organic matter and the presence of hydrated minerals. This supports the idea that aqueous alteration in AZ’s parent body played a major role in the evolution of the organic matter
The atmospheric entry of fine-grained micrometeorites: The role of volatile gases in heating and fragmentation
The early stages of atmospheric entry are investigated in four large (250–950 lm) unmelted micrometeorites (three fine-grained and one composite), derived from the Transantarctic Mountain micrometeorite collection. These particles have abundant, interconnected, secondary pore spaces which form branching channels and show evidence of enhanced heating along their channel walls. Additionally, a micrometeorite with a doublewalled igneous rim is described, suggesting that some particles undergo volume expansion during entry. This study provides new textural data which links together entry heating processes known to operate inside micrometeoroids, thereby generating a more comprehensive model of their petrographic evolution. Initially, flash heated micrometeorites develop a melt layer on their exterior; this igneous rim migrates inwards. Meanwhile, the particle core is heated by the decomposition of low-temperature phases and by volatile gas release. Where the igneous rim acts as a seal, gas pressures rise, resulting in the formation of interconnected voids and higher particle porosities. Eventually, the igneous rim is breached and gas exchange with the atmosphere occurs. This mechanism replaces inefficient conductive rim-to-core thermal gradients with more efficient particle-wide heating, driven by convective gas flow. Interconnected voids also increase the likelihood of particle fragmentation during entry and, may therefore explain the rarity of large fine-grained micrometeorites among collections.Copyright © 2018, Suttle, M.D. et al. This document is the author’s final accepted version of the journal article. You are advised to consult the published version if you wish to cite from it
Connecting Planetary Composition with Formation
The rapid advances in observations of the different populations of
exoplanets, the characterization of their host stars and the links to the
properties of their planetary systems, the detailed studies of protoplanetary
disks, and the experimental study of the interiors and composition of the
massive planets in our solar system provide a firm basis for the next big
question in planet formation theory. How do the elemental and chemical
compositions of planets connect with their formation? The answer to this
requires that the various pieces of planet formation theory be linked together
in an end-to-end picture that is capable of addressing these large data sets.
In this review, we discuss the critical elements of such a picture and how they
affect the chemical and elemental make up of forming planets. Important issues
here include the initial state of forming and evolving disks, chemical and dust
processes within them, the migration of planets and the importance of planet
traps, the nature of angular momentum transport processes involving turbulence
and/or MHD disk winds, planet formation theory, and advanced treatments of disk
astrochemistry. All of these issues affect, and are affected by the chemistry
of disks which is driven by X-ray ionization of the host stars. We discuss how
these processes lead to a coherent end-to-end model and how this may address
the basic question.Comment: Invited review, accepted for publication in the 'Handbook of
Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018). 46 pages, 10
figure
The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites
High-precision oxygen isotopic compositions of eighteen large cosmic spherules (>500 µm diameter) from the Atacama Desert, Chile, were determined using IR-laser fluorination – Isotope Ratio Mass spectrometry. The four discrete isotopic groups defined in a previous study on cosmic spherules from the Transantarctic Mountains (Suavet et al., 2010) were identified, confirming their global distribution. Approximately 50% of the studied cosmic spherules are related to carbonaceous chondrites, 38% to ordinary chondrites and 12% to unknown parent bodies. Approximately 90% of barred olivine (BO) cosmic spherules show oxygen isotopic compositions suggesting they are related to carbonaceous chondrites. Similarly, ∼90% porphyritic olivine (Po) cosmic spherules are related to ordinary chondrites and none can be unambiguously related to carbonaceous chondrites. Other textures are related to all potential parent bodies. The data suggests that the textures of cosmic spherules are mainly controlled by the nature of the precursor rather than by the atmospheric entry parameters. We propose that the Po texture may essentially be formed from a coarse-grained precursor having an ordinary chondritic mineralogy and chemistry. Coarse-grained precursors related to carbonaceous chondrites (i.e. chondrules) are likely to either survive atmospheric entry heating or form V-type cosmic spherules. Due to the limited number of submicron nucleation sites after total melting, ordinary chondrite-related coarse-grained precursors that suffer higher peak temperatures will preferentially form cryptocrystalline (Cc) textures instead of BO textures. Conversely, the BO textures would be mostly related to the fine-grained matrices of carbonaceous chondrites due to the wide range of melting temperatures of their constituent mineral phases, allowing the preservation of submicron nucleation sites. Independently of the nature of the precursors, increasing peak temperatures form glassy textures
Probing model interstellar grain surfaces with small molecules
Temperature-programmed desorption and reflection-absorption infrared spectroscopy have been used to explore the interaction of oxygen (O2), nitrogen (N2), carbon monoxide (CO) and water (H2O) with an amorphous silica film as a demonstration of the detailed characterization of the silicate surfaces that might be present in the interstellar medium. The simple diatomic adsorbates are found to wet the silica surface and exhibit first-order desorption kinetics in the regime up to monolayer coverage. Beyond that, they exhibit zero-order kinetics as might be expected for sublimation of bulk solids. Water, in contrast, does not wet the silica surface and exhibits zero-order desorption kinetics at all coverages consistent with the formation of an islanded structure. Kinetic parameters for use in astrophysical modelling were obtained by inversion of the experimental data at sub-monolayer coverages and by comparison with models in the multilayer regime. Spectroscopic studies in the sub-monolayer regime show that the C–O stretching mode is at around 2137 cm−1 (5.43 μm), a position consistent with a linear surface–CO interaction, and is inhomogenously broadened as resulting from the heterogeneity of the surface. These studies also reveal, for the first time, direct evidence for the thermal activation of diffusion, and hence de-wetting, of H2O on the silica surface. Astrophysical implications of these findings could account for a part of the missing oxygen budget in dense interstellar clouds, and suggest that studies of the sub-monolayer adsorption of these simple molecules might be a useful probe of surface chemistry on more complex silicate materials
- …
