4,026 research outputs found
Energy Functions in Box Ball Systems
The box ball system is studied in the crystal theory formulation. New
conserved quantities and the phase shift of the soliton scattering are obtained
by considering the energy function (or -function) in the combinatorial
-matrix.Comment: 15 pages, LaTeX2e: one paragraph replaced and reference added in
Introduction, a paragraph added in Section 2.5, remark 2) after Th 4.6 adde
Observation of an energetic radiation burst from mountain-top thunderclouds
During thunderstorms on 2008 September 20, a simultaneous detection of gamma
rays and electrons was made at a mountain observatory in Japan located 2770 m
above sea level. Both emissions, lasting 90 seconds, were associated with
thunderclouds rather than lightning. The photon spectrum, extending to 10 MeV,
can be interpreted as consisting of bremsstrahlung gamma rays arriving from a
source which is 60 - 130 m in distance at 90% confidence level. The observed
electrons are likely to be dominated by a primary population escaping from an
acceleration region in the clouds.Comment: 12 pages, 3 figures, accepted for publication in Physical Review
Letter
Holographic storage of multiple coherence gratings in a Bose-Einstein condensate
We demonstrate superradiant conversion between a two-mode collective atomic
state and a single-mode light field in an elongated cloud of Bose-condensed
atoms. Two off-resonant write beams induce superradiant Raman scattering,
producing two independent coherence gratings with a different wave vector in
the cloud. By applying phase-matched read beams after a controllable delay, the
gratings can be selectively converted into the light field also in a
superradiant way. Due to the large cooperativity parameter and the small
velocity width of the condensate, a high conversion efficiency of % and
a long storage time of s were achieved.Comment: 5 pages, 4 figure
Polar Perturbations of Self-gravitating Supermassive Global Monopoles
Spontaneous global symmetry breaking of O(3) scalar field gives rise to
point-like topological defects, global monopoles. By taking into account
self-gravity,the qualitative feature of the global monopole solutions depends
on the vacuum expectation value v of the scalar field. When v < sqrt{1 / 8 pi},
there are global monopole solutions which have a deficit solid angle defined at
infinity. When sqrt{1 / 8 pi} <= v < sqrt{3 / 8 pi}, there are global monopole
solutions with the cosmological horizon, which we call the supermassive global
monopole. When v >= sqrt{3 / 8 pi}, there is no nontrivial solution. It was
shown that all of these solutions are stable against the spherical
perturbations. In addition to the global monopole solutions, the de Sitter
solutions exist for any value of v. They are stable against the spherical
perturbations when v sqrt{3 / 8 pi}.
We study polar perturbations of these solutions and find that all
self-gravitating global monopoles are stable even against polar perturbations,
independently of the existence of the cosmological horizon, while the de Sitter
solutions are always unstable.Comment: 10 pages, 6 figures, corrected some type mistakes (already corrected
in PRD version
Abelian Higgs Hair for Rotating and Charged Black Holes
We study the problem of vortex solutions in the background of rotating black
holes in both asymptotically flat and asymptoticlly anti de Sitter spacetimes.
We demonstrate the Abelian Higgs field equations in the background of four
dimensional Kerr, Kerr-AdS and Reissner-Nordstrom-AdS black holes have vortex
line solutions. These solutions, which have axial symmetry, are generalization
of the Nielsen-Olesen string. By numerically solving the field equations in
each case, we find that these black holes can support an Abelian Higgs field as
hair. This situation holds even in the extremal case, and no flux-expulsion
occurs. We also compute the effect of the self gravity of the Abelian Higgs
field show that the the vortex induces a deficit angle in the corresponding
black hole metrics.Comment: 22 pages, 16 figures, a section about the vortex self gravity on Kerr
black hole added, extremal black holes considered, one figure changed, one
reference adde
Cosmic Colored Black Holes
We present spherically symmetric static solutions (a particle-like solution
and a black hole solution) in the Einstein-Yang-Mills system with a
cosmological constant.Although their gravitational structures are locally
similar to those of the Bartnik-McKinnon particles or the colored black holes,
the asymptotic behavior becomes quite different because of the existence of a
cosmological horizon. We also discuss their stability by means of a catastrophe
theory as well as a linear perturbation analysis and find the number of
unstable modes.Comment: 12 pages, latex, 4 figures (available upon request
Perturbations of global monopoles as a black hole's hair
We study the stability of a spherically symmetric black hole with a global
monopole hair. Asymptotically the spacetime is flat but has a deficit solid
angle which depends on the vacuum expectation value of the scalar field. When
the vacuum expectation value is larger than a certain critical value, this
spacetime has a cosmological event horizon. We investigate the stability of
these solutions against the spherical and polar perturbations and confirm that
the global monopole hair is stable in both cases. Although we consider some
particular modes in the polar case, our analysis suggests the conservation of
the "topological charge" in the presence of the event horizons and violation of
black hole no-hair conjecture in asymptotically non-flat spacetime.Comment: 11 pages, 2 figures, some descriptions were improve
- …
