770 research outputs found

    Wheeler-DeWitt Equation in 3 + 1 Dimensions

    Full text link
    Physical properties of the quantum gravitational vacuum state are explored by solving a lattice version of the Wheeler-DeWitt equation. The constraint of diffeomorphism invariance is strong enough to uniquely determine the structure of the vacuum wave functional in the limit of infinitely fine triangulations of the three-sphere. In the large fluctuation regime the nature of the wave function solution is such that a physically acceptable ground state emerges, with a finite non-perturbative correlation length naturally cutting off any infrared divergences. The location of the critical point in Newton's constant GcG_c, separating the weak from the strong coupling phase, is obtained, and it is inferred from the structure of the wave functional that fluctuations in the curvatures become unbounded at this point. Investigations of the vacuum wave functional further suggest that for weak enough coupling, G<GcG<G_c, a pathological ground state with no continuum limit appears, where configurations with small curvature have vanishingly small probability. One is then lead to the conclusion that the weak coupling, perturbative ground state of quantum gravity is non-perturbatively unstable, and that gravitational screening cannot be physically realized in the lattice theory. The results we find are in general agreement with the Euclidean lattice gravity results, and lend further support to the claim that the Lorentzian and Euclidean lattice formulations for gravity describe the same underlying non-perturbative physics.Comment: 44 pages, 5 figures. arXiv admin note: text overlap with arXiv:1207.375

    Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term sps+μ\sum_{s}|p_s| + \mu

    Full text link
    We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank dd Tensorial Group Field Theory. These models are called Abelian because their fields live on U(1)DU(1)^D. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models ϕ2n\phi^{2n} over U(1)U(1), and a matrix model over U(1)2U(1)^2. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension DD. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank dd Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.Comment: 69 pages, 35 figure

    The Great Space Weather Event during February 1872 Recorded in East Asia

    Full text link
    The study of historical great geomagnetic storms is crucial for assessing the possible risks to the technological infrastructure of a modern society, caused by extreme space-weather events. The normal benchmark has been the great geomagnetic storm of September 1859, the so-called "Carrington Event". However, there are numerous records of another great geomagnetic storm in February 1872. This storm, about 12 years after the Carrington Event, resulted in comparable magnetic disturbances and auroral displays over large areas of the Earth. We have revisited this great geomagnetic storm in terms of the auroral and sunspot records in the historical documents from East Asia. In particular, we have surveyed the auroral records from East Asia and estimated the equatorward boundary of the auroral oval to be near 24.3 deg invariant latitude (ILAT), on the basis that the aurora was seen near the zenith at Shanghai (20 deg magnetic latitude, MLAT). These results confirm that this geomagnetic storm of February 1872 was as extreme as the Carrington Event, at least in terms of the equatorward motion of the auroral oval. Indeed, our results support the interpretation of the simultaneous auroral observations made at Bombay (10 deg MLAT). The East Asian auroral records have indicated extreme brightness, suggesting unusual precipitation of high-intensity, low-energy electrons during this geomagnetic storm. We have compared the duration of the East Asian auroral displays with magnetic observations in Bombay and found that the auroral displays occurred in the initial phase, main phase, and early recovery phase of the magnetic storm.Comment: 28 pages, 5 figures, accepted for publication in the Astrophysical Journal on 31 May 201

    Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes

    Full text link
    Aiming to settle the controversial observations for halogen-bridged binuclear transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well as quantum, phase transitions are investigated with particular emphasis on the competition between electron itinerancy, electron-phonon interaction and electron-electron correlation. Recently observed distinct thermal behaviors of two typical MMX compounds Pt_2(CH_3CS_2)_4I and (NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn. Vol.70, No.5 (2001

    The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun

    Full text link
    The dynamics of horizontal plasma flows during the first hours of the emergence of active region magnetic flux in the solar photosphere have been analyzed using SOHO/MDI data. Four active regions emerging near the solar limb have been considered. It has been found that extended regions of Doppler velocities with different signs are formed in the first hours of the magnetic flux emergence in the horizontal velocity field. The flows observed are directly connected with the emerging magnetic flux; they form at the beginning of the emergence of active regions and are present for a few hours. The Doppler velocities of flows observed increase gradually and reach their peak values 4-12 hours after the start of the magnetic flux emergence. The peak values of the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are 800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed substantially exceed the separation velocities of the photospheric magnetic flux outer boundaries. The asymmetry was detected between velocity structures of leading and following polarities. Doppler velocity structures located in a region of leading magnetic polarity are more powerful and exist longer than those in regions of following polarity. The Doppler velocity asymmetry between the velocity structures of opposite sign reaches its peak values soon after the emergence begins and then gradually drops within 7-12 hours. The peak values of asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and 710-940 m/s, respectively. An interpretation of the observable flow of photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102, P.4.12, http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf

    Holographic Dark Energy Like in f(R)f(R) Gravity

    Full text link
    We investigate the corresponding relation between f(R)f(R) gravity and holographic dark energy. We introduce a kind of energy density from f(R)f(R) which has role of the same as holographic dark energy. We obtain the differential equation that specify the evolution of the introduced energy density parameter based on varying gravitational constant. We find out a relation for the equation of state parameter to low redshifts which containing varying GG correction.Comment: 10 page

    Competing Ground States of the New Class of Halogen-Bridged Metal Complexes

    Full text link
    Based on a symmetry argument, we study the ground-state properties of halogen-bridged binuclear metal chain complexes. We systematically derive commensurate density-wave solutions from a relevant two-band Peierls-Hubbard model and numerically draw the the ground-state phase diagram as a function of electron-electron correlations, electron-phonon interactions, and doping concentration within the Hartree-Fock approximation. The competition between two types of charge-density-wave states, which has recently been reported experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp

    Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices

    Full text link
    Transport properties of the two-dimensional electron gas (2DEG) are considered in the presence of a perpendicular magnetic field BB and of a {\it weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding tight-binding equation shows that each Landau level splits into several subbands when a rational number of flux quanta h/eh/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor ρμν\rho_{\mu\nu}. The relative phase of the oscillations in ρxx\rho_{xx} and ρyy\rho_{yy} depends on the modulation periods involved. For a 2D modulation with a {\bf short} period 100\leq 100 nm, in addition to the Weiss oscillations the collisional contribution to the conductivity and consequently the tensor ρμν\rho_{\mu\nu} show {\it prominent peaks when one flux quantum h/eh/e passes through an integral number of unit cells} in good agreement with recent experiments. For periods 300400300- 400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure
    corecore