32,566 research outputs found

    Symmetries of the Einstein Equations

    Get PDF
    Generalized symmetries of the Einstein equations are infinitesimal transformations of the spacetime metric that formally map solutions of the Einstein equations to other solutions. The infinitesimal generators of these symmetries are assumed to be local, \ie at a given spacetime point they are functions of the metric and an arbitrary but finite number of derivatives of the metric at the point. We classify all generalized symmetries of the vacuum Einstein equations in four spacetime dimensions and find that the only generalized symmetry transformations consist of: (i) constant scalings of the metric (ii) the infinitesimal action of generalized spacetime diffeomorphisms. Our results rule out a large class of possible ``observables'' for the gravitational field, and suggest that the vacuum Einstein equations are not integrable.Comment: 15 pages, FTG-114-USU, Plain Te

    Non-local transport and the Hall viscosity of 2D hydrodynamic electron liquids

    Full text link
    In a fluid subject to a magnetic field the viscous stress tensor has a dissipationless antisymmetric component controlled by the so-called Hall viscosity. We here propose an all-electrical scheme that allows a determination of the Hall viscosity of a two-dimensional electron liquid in a solid-state device.Comment: 12 pages, 4 figure

    Solitary Waves in Massive Nonlinear S^N-Sigma Models

    Get PDF
    The solitary waves of massive (1+1)-dimensional nonlinear S^N-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive N-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem

    IFSM representation of Brownian motion with applications to simulation

    Get PDF
    Several methods are currently available to simulate paths of the Brownian motion. In particular, paths of the BM can be simulated using the properties of the increments of the process like in the Euler scheme, or as the limit of a random walk or via L2 decomposition like the Kac-Siegert/Karnounen-Loeve series. In this paper we first propose a IFSM (Iterated Function Systems with Maps) operator whose fixed point is the trajectory of the BM. We then use this representation of the process to simulate its trajectories. The resulting simulated trajectories are self-affine, continuous and fractal by construction. This fact produces more realistic trajectories than other schemes in the sense that their geometry is closer to the one of the true BM's trajectories. The IFSM trajectory of the BM can then be used to generate more realistic solutions of stochastic differential equations

    New Symbolic Tools for Differential Geometry, Gravitation, and Field Theory

    Get PDF
    DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors and other tensorial invariants, algebraic classification of curvature, and symmetry reduction of field equations.Comment: 42 page

    State determination: an iterative algorithm

    Full text link
    An iterative algorithm for state determination is presented that uses as physical input the probability distributions for the eigenvalues of two or more observables in an unknown state Φ\Phi. Starting form an arbitrary state Ψ0\Psi_{0}, a succession of states Ψn\Psi_{n} is obtained that converges to Φ\Phi or to a Pauli partner. This algorithm for state reconstruction is efficient and robust as is seen in the numerical tests presented and is a useful tool not only for state determination but also for the study of Pauli partners. Its main ingredient is the Physical Imposition Operator that changes any state to have the same physical properties, with respect to an observable, of another state.Comment: 11 pages 3 figure
    corecore