245 research outputs found

    Cutting rules and perturbative unitarity of noncommutative electric-type field theories from string theory

    Get PDF
    We discuss the breakdown of perturbative unitarity of noncommutative quantum field theories in electric-type background from the point of view of cutting rules. We consider the analytic structure of string loop two-point functions and then perform the zero slope limit of Seiberg and Witten. In this way we pick up how the unphysical tachyonic branch point appears in the effective field theory

    Drinfeld second realization of the quantum affine superalgebras of D(1)(2,1;x)D^{(1)}(2,1;x) via the Weyl groupoid

    Get PDF
    We obtain Drinfeld second realization of the quantum affine superalgebras associated with the affine Lie superalgebra D(1)(2,1;x)D^{(1)}(2,1;x). Our results are analogous to those obtained by Beck for the quantum affine algebras. Beck's analysis uses heavily the (extended) affine Weyl groups of the affine Lie algebras. In our approach the structures are based on a Weyl groupoid.Comment: 40 pages, 1 figure. close to the final version to appear in RIMS Kokyuroku Bessatsu (Besstsu) B8 (2008) 171-21

    Area-preserving diffeomorphisms in gauge theory on a non-commutative plane: a lattice study

    Get PDF
    We consider Yang-Mills theory with the U(1) gauge group on a non-commutative plane. Perturbatively it was observed that the invariance of this theory under area-preserving diffeomorphisms (APDs) breaks down to a rigid subgroup SL(2,R). Here we present explicit results for the APD symmetry breaking at finite gauge coupling and finite non-commutativity. They are based on lattice simulations and measurements of Wilson loops with the same area but with a variety of different shapes. Our results are consistent with the expected loss of invariance under APDs. Moreover, they strongly suggest that non-perturbatively the SL(2,R) symmetry does not persist either.Comment: 28 pages, 15 figures, published versio

    Simulation Results for U(1) Gauge Theory on Non-Commutative Spaces

    Get PDF
    We present numerical results for U(1) gauge theory in 2d and 4d spaces involving a non-commutative plane. Simulations are feasible thanks to a mapping of the non-commutative plane onto a twisted matrix model. In d=2 it was a long-standing issue if Wilson loops are (partially) invariant under area-preserving diffeomorphisms. We show that non-perturbatively this invariance breaks, including the subgroup SL(2,R). In both cases, d=2 and d=4, we extrapolate our results to the continuum and infinite volume by means of a Double Scaling Limit. In d=4 this limit leads to a phase with broken translation symmetry, which is not affected by the perturbatively known IR instability. Therefore the photon may survive in a non-commutative world

    Loop Equation in Two-dimensional Noncommutative Yang-Mills Theory

    Get PDF
    The classical analysis of Kazakov and Kostov of the Makeenko-Migdal loop equation in two-dimensional gauge theory leads to usual partial differential equations with respect to the areas of windows formed by the loop. We extend this treatment to the case of U(N) Yang-Mills defined on the noncommutative plane. We deal with all the subtleties which arise in their two-dimensional geometric procedure, using where needed results from the perturbative computations of the noncommutative Wilson loop available in the literature. The open Wilson line contribution present in the non-commutative version of the loop equation drops out in the resulting usual differential equations. These equations for all N have the same form as in the commutative case for N to infinity. However, the additional supplementary input from factorization properties allowing to solve the equations in the commutative case is no longer valid.Comment: 20 pages, 3 figures, references added, small clarifications adde

    On the invariance under area preserving diffeomorphisms of noncommutative Yang-Mills theory in two dimensions

    Get PDF
    We present an investigation on the invariance properties of noncommutative Yang-Mills theory in two dimensions under area preserving diffeomorphisms. Stimulated by recent remarks by Ambjorn, Dubin and Makeenko who found a breaking of such an invariance, we confirm both on a fairly general ground and by means of perturbative analytical and numerical calculations that indeed invariance under area preserving diffeomorphisms is lost. However a remnant survives, namely invariance under linear unimodular tranformations.Comment: LaTeX JHEP style, 16 pages, 2 figure

    Unitarity of noncommutative field theories from string theory

    Full text link
    We improve the study of the lack of perturbative unitarity of noncommutative space-time quantum field theories derived from open string theory in electric backgrounds, enforcing the universality of the mechanism by which a tachyonic branch cut appears when the Seiberg-Witten limit freezes the string in an unstable vacuum. The main example is realized in the context of the on-shell four-tachyon amplitude of the bosonic string, and the dependence of the phenomenon on the brane-worldvolume dimension is analysed. We discuss the possibility of a proof in superstring theory, and finally mention the NCOS limit in this framework.Comment: 8 pages, no figures. Work done in collaboration with A. Bassetto and R. Valandro (Padua Univ.). Submitted for the proceedings of the conference "Spacetime and Fundamental Interactions: Quantum Aspects. A conference to honour A.P.Balachandran's 65th birthday", Vietri, 26-31 May 200

    On the Hopf algebra structure of the AdS/CFT S-matrix

    Get PDF
    We formulate the Hopf algebra underlying the su(2|2) worldsheet S-matrix of the AdS_5 x S^5 string in the AdS/CFT correspondence. For this we extend the previous construction in the su(1|2) subsector due to Janik to the full algebra by specifying the action of the coproduct and the antipode on the remaining generators. The nontriviality of the coproduct is determined by length-changing effects and results in an unusual central braiding. As an application we explicitly determine the antiparticle representation by means of the established antipode.Comment: 12 pages, no figures, minor changes, typos corrected, comments and references added, v3: three references adde
    corecore