229 research outputs found
Plausibility in Architectural Design - DOMEdesign – Software Support for the formal shaping and architect-oriented design of shell structures
Complex gridshell structures used in architecturally ambitious constructions remain as appealing as ever in the public realm. This paper describes the theory and approach behind the software realisation of a tool which helps in finding the affine self-weight geometry of gridshell structures. The software tool DOMEdesign supports the formal design process of lattice and grid shell structures based upon the laws of physics. The computer-aided simulation of suspension models is used to derive structurally favourable forms for domes and arches subject to compression load, based upon the input of simple architectonic parameters. Irregular plans, three-dimensional topography, a choice different kinds of shell lattice structures and the desired height of the dome are examples of design parameters which can be used to modify the architectural design. The provision of data export formats for structural dimensioning and visualisation software enables engineers and planners to use the data in future planning and to communicate the design to the client
Genetically modified natural killer cells specifically recognizing the tumor-associated antigens ErbB2/HER2 and EpCAM
The continuously growing natural killer (NK) cell line NK-92 is highly cytotoxic against malignant cells of various origin without affecting normal human cells. Based on this selectivity, the potential of NK-92 cells for adoptive therapy is currently being investigated in phase I clinical studies. To further enhance the antitumoral activity of NK-92 cells and expand the range of tumor entities suitable for NK-92-based therapies, here by transduction with retroviral vectors we have generated genetically modified NK-92 cells expressing chimeric antigen receptors specific either for the tumor-associated ErbB2 (HER2/neu) antigen or the human Epithelial Cell Adhesion Molecule (Ep-CAM). Both antigens are overexpressed by many tumors of epithelial origin. The chimeric antigen receptors consist of either the ErbB2 specific scFv(FRP5) antibody fragment or the Ep-CAM specific scFv(MOC31), a flexible hinge region derived from CD8, and transmembrane and intracellular regions of the CD3 zeta chain. Transduced NK-92-scFv(FRP5)-zeta or NK-92-scFv(MOC31)-zeta cells express high levels of the fusion proteins on the cell surface as determined by FACS analysis. In europium release assays no difference in cytotoxic activity of NK-92 and transduced NK-92 cells towards ErbB2 or Ep-CAM negative targets was found. However, even at low effector to target ratios transduced NK-92 cells specifically and efficiently lysed established ErbB2 or Ep-CAM expressing tumor cells that were completely resistant to cytolytic activity of parental NK-92 cells. Similarly, ErbB2-positive primary breast cancer cells isolated from pleural effusions of patients with recurrent disease were selectively killed by NK-92-scFv(FRP5)-zeta. In an in vivo model in immunodeficient mice treatment with retargeted NK-92-scFv(FRP5)-zeta, but not parental NK-92 cells resulted in markedly delayed growth of ErbB2 transformed cancer cells. These results demonstrate that efficient retargeting of NK-92 cytotoxicity can be achieved, and might allow the generation of potent cell-based therapeutics for the treatment of ErbB2 and Ep-CAM expressing malignancies. This therapeutic approach might be applicable for a large variety of different cancers where suitable cell surface antigens have been identified
Chemical Chaperones Improve Protein Secretion and Rescue Mutant Factor VIII in Mice with Hemophilia A.
nefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking
Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma
Background aims
Natural killer (NK) cells can rapidly respond to transformed and stressed cells and represent an important effector cell type for adoptive immunotherapy. In addition to donor-derived primary NK cells, continuously expanding cytotoxic cell lines such as NK-92 are being developed for clinical applications.
Methods
To enhance their therapeutic utility for the treatment of B-cell malignancies, we engineered NK-92 cells by lentiviral gene transfer to express chimeric antigen receptors (CARs) that target CD19 and contain human CD3ζ (CAR 63.z), composite CD28-CD3ζ or CD137-CD3ζ signaling domains (CARs 63.28.z and 63.137.z).
Results
Exposure of CD19-positive targets to CAR NK-92 cells resulted in formation of conjugates between NK and cancer cells, NK-cell degranulation and selective cytotoxicity toward established B-cell leukemia and lymphoma cells. Likewise, the CAR NK cells displayed targeted cell killing of primary pre-B-ALL blasts that were resistant to parental NK-92. Although all three CAR NK-92 cell variants were functionally active, NK-92/63.137.z cells were less effective than NK-92/63.z and NK-92/63.28.z in cell killing and cytokine production, pointing to differential effects of the costimulatory CD28 and CD137 domains. In a Raji B-cell lymphoma model in NOD-SCID IL2R γnull mice, treatment with NK-92/63.z cells, but not parental NK-92 cells, inhibited disease progression, indicating that selective cytotoxicity was retained in vivo.
Conclusions
Our data demonstrate that it is feasible to generate CAR-engineered NK-92 cells with potent and selective antitumor activity. These cells may become clinically useful as a continuously expandable off-the-shelf cell therapeutic agent
Stability and neutralising capacity of SARS-CoV-2-specific antibodies in convalescent plasma
Entwerfen Versionieren: Probleme und Lösungsansätze für die Organisation verteilter Entwurfsprozesse
Entwerfen ist ein komplexer Vorgang. Soll dieser Vorgang nicht allein, sondern räumlich verteilt mit mehreren Beteiligten gemeinsam stattfinden, so sind digitale Werkzeuge zur Unterstützung dieses Prozesses unumgänglich. Die Verwendung von Werkzeugen für Ent-wurfsprozesse bedeutet jedoch immer auch eine Manipulation des zu unterstützenden Prozesses selbst. Im Falle von Werkzeugen zur Unterstützung der Kollaboration mehrerer Beteiligter stellen die implementierten Koordinationsmechanismen solche prozessbeeinflussenden Faktoren dar. Damit diese Mechanismen, entsprechend der Charakteristika kreativer Prozesse, so flexibel wie möglich gestaltet werden können, liegt die Anforderung auf technischer Ebene darin, ein geeignetes Konzept für eine nachvollziehbare Speicherung (Versionierung) der stattfindenden Entwurfshandlungen zu schaffen. Der vorliegende Artikel beschäftigt sich mit dem Thema der Entwurfsversionierung in computergestützten kollaborativen Arbeitsumgebungen. Vor dem Hintergrund, dass die Versionierung den kreativen Entwurfsprozess möglichst wenig manipulieren soll, werden technische sowie konzeptionelle Probleme der diskutiert und Lösungsansätze für diese vorgestellt
Recommended from our members
Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips
The ability to separate specific biological components from cell suspensions is indispensable for liquid biopsies, and for personalized diagnostics and therapy. This paper describes an advanced surface acoustic wave (SAW) based device designed for the enrichment of platelets (PLTs) from a dispersion of PLTs and red blood cells (RBCs) at whole blood concentrations, opening new possibilities for diverse applications involving cell manipulation with high throughput. The device is made of patterned SU-8 photoresist that is lithographically defined on the wafer scale with a new proposed methodology. The blood cells are initially focused and subsequently separated by an acoustic radiation force (ARF) applied through standing SAWs (SSAWs). By means of flow cytometric analysis, the PLT concentration factor was found to be 7.7, and it was proven that the PLTs maintain their initial state. A substantially higher cell throughput and considerably lower applied powers than comparable devices from literature were achieved. In addition, fully coupled 3D numerical simulations based on SAW wave field measurements were carried out to anticipate the coupling of the wave field into the fluid, and to obtain the resulting pressure field. A comparison to the acoustically simpler case of PDMS channel walls is given. The simulated results show an ideal match to the experimental observations and offer the first insights into the acoustic behavior of SU-8 as channel wall material. The proposed device is compatible with current (Lab-on-a-Chip) microfabrication techniques allowing for mass-scale, reproducible chip manufacturing which is crucial to push the technology from lab-based to real-world applications. © The Royal Society of Chemistry
Quality of life and metabolic outcomes after total pancreatectomy and simultaneous islet autotransplantation
Background
Pancreas surgery remains technically challenging and is associated with considerable morbidity and mortality. Identification of predictive risk factors for complications have led to a stratified surgical approach and postoperative management. The option of simultaneous islet autotransplantation (sIAT) allows for significant attenuation of long-term metabolic and overall complications and improvement of quality of life (QoL). The potential of sIAT to stratify a priori the indication for total pancreatectomy is yet not adequately evaluated.
Methods
The aim of this analysis was to evaluate the potential of sIAT in patients undergoing total pancreatectomy to improve QoL, functional and overall outcome and therefore modify the surgical strategy towards earlier and extended indications. A center cohort of 24 patients undergoing pancreatectomy were simultaneously treated with IAT. Patients were retrospectively analyzed regarding in-hospital and overall mortality, postoperative complications, ICU stay, hospital stay, metabolic outcome, and QoL.
Results
Here we present that all patients undergoing primary total pancreatectomy or surviving complicated two-stage pancreas resection and receiving sIAT show excellent metabolic outcome (33% insulin independence, 66% partial graft function; HbA1c 6,1 ± 1,0%) and significant benefit regarding QoL. Primary total pancreatectomy leads to significantly improved overall outcome and a significant reduction in ICU- and hospital stay compared to a two-stage completion pancreatectomy approach.
Conclusions
The findings emphasize the importance of risk-stratified pancreas surgery. Feasibility of sIAT should govern the indication for primary total pancreatectomy particularly in high-risk patients. In rescue completion pancreatectomy sIAT should be performed whenever possible due to tremendous metabolic benefit and associated QoL
- …
