291 research outputs found

    Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    Get PDF
    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating

    Preparation and Evaluation of Ordinary Attritor Milled Ti-Al Powders and Corresponding Thermal Sprayed Coatings

    Get PDF
    Ordinary attritor milling of elemental metallic powders under atmospheric condition was utilized to prepare desirable amount of powders for thermal spraying. The effect of different BPR (Ball to Powder weight Ratio) has been investigated in terms of nitridation during milling. To investigate the effect of heat treatment on the formation of dispersed phases, heat treatment to the powder was performed as well. Titanium aluminide coatings with carbonitride dispersed phases were successfully fabricated by low pressure plasma spraying. The hardness and specific wear of the coatings prepared by the powders with different milling conditions was measured so as to investigate the effect of the content of dispersed titanium based carbonitride phases. Experimental results show that the formation of dispersed carbonitride phases depends strongly on milling condition, irrespective of heat treated powders or thermal sprayed coatings, and directly affects the mechanical properties of the coatings. Compared with the phase composition of heated powders and corresponding thermal sprayed coatings, it seems that the temperature of processing the MA powders is also a decisive factor on the phase formation, especially carbonitride phases and oxide phase

    大腸癌における神経成長因子の発現

    Get PDF
    取得学位:博士(医学), 学位番号:医博甲第1380号,学位授与年月日:平成11年7月31日,学位授与年:199

    キーパーソン ホケン ニ カンスル イチコウサツ

    Get PDF
    departmental bulletin pape

    旅と本と

    Get PDF
    departmental bulletin pape

    Influence of Annealed Aluminum Properties on Adhesion Bonding of Cold Sprayed Titanium Dioxide Coating

    Get PDF
    It is well known that cold spraying ceramic materials can be difficult because cold spraying requires plastic deformation of the feedstock particles for adhesion to the substrate. The challenge lies in the difficulty of plastically deforming hard and brittle ceramic materials, such as TiO2. Previous studies have reported the possibility of cold spraying thick pure TiO2 but the bonding mechanism of cold sprayed TiO2 is not fully understood. The factor like substrate condition as oxide film thickness and mechanical properties may also affect cold spray deposition but not fully understood in cold spraying ceramic. The aim of the present research is to investigate the correlation between the oxide thickness and substrate deformation with the adhesion strength of cold-sprayed TiO2 coatings toward the bonding mechanism involved. Relevant experiments were executed using Al 1050, subjected to various annealing temperatures and cold-sprayed with TiO2 powder. The results indicate a decreasing trend of coating adhesion strength with increasing annealed substrate temperature from room temperature to 400°C annealed. Metallurgical bonding is pronounced as bonding mechanism involved between TiO2 particle and annealed 1050 substrate
    corecore