396 research outputs found

    Effects and influences on neutrino oscillations due to a thin density layer perturbation added to a matter density profile

    Full text link
    In this paper, we show the effects on the transition probabilities for neutrino oscillations due to a thin constant density layer perturbation added to an arbitrary matter density profile. In the case of two neutrino flavors, we calculate the effects both analytically and numerically, whereas in the case of three neutrino flavors, we perform the studies purely numerically. As an realistic example we consider the effects of the Earth's atmosphere when added to the Earth's matter density profile on the neutrino oscillation transition probabilities for atmospheric neutrinos.Comment: 9 pages, 6 figures, LaTeX. Final version to be published in Phys. Lett.

    A bound on neutrino masses from baryogenesis

    Get PDF
    Properties of neutrinos, the lightest of all elementary particles, may be the origin of the entire matter-antimatter asymmetry of the universe. This requires that neutrinos are Majorana particles, which are equal to their antiparticles, and that their masses are sufficiently small. Leptogenesis, the theory explaining the cosmic matter-antimatter asymmetry, predicts that all neutrino masses are smaller than 0.2 eV, which will be tested by forthcoming laboratory experiments and by cosmology.Comment: 8 pages, 2 figure

    Family Hierarchy and Large Neutrino Mixings

    Full text link
    The recent neutrino data seem to favor two large and one small mixing angles and a hierarchy of their squared mass differences. We discuss these within the context of hierarchical neutrino masses. We show that this scheme suggests a specific neutrino mass matrix with mild fine-tuning. We then present a Froggatt-Nielsen model that reproduces this matrix

    Constraining four neutrino mass patterns from neutrinoless double beta decay

    Get PDF
    All existing data on neutrino oscillations (including those from the LSND experiment) imply a four neutrino scheme with six different allowed mass patterns. Some of the latter are shown to be disfavored by using a conservative upper bound on the βbeta0ν\beta beta 0 \nu nuclear decay rate, if neutrinos are assumed to be Majorana particles. Comparisons are also made with restrictions from tritium β\beta-decay and cosmology.Comment: One equation and three entries in a table have been changed, some typographical errors corrected and a few references added. The basic conclusions are not changed. To be published in Physics Letters. B., 9 pages, 4 figure

    The Physics Potential of Future Long Baseline Neutrino Oscillation Experiments

    Get PDF
    We discuss in detail different future long baseline neutrino oscillation setups and we show the remarkable potential for very precise measurements of mass splittings and mixing angles. Furthermore it will be possible to make precise tests of coherent forward scattering and MSW effects, which allow to determine the sign of Δm2\Delta m^2. Finally strong limits or measurements of leptonic CP violation will be possible, which is very interesting since it is most likely connected to the baryon asymmetry of the universe.Comment: 32 pages, 15 figures, to appear in ``Neutrino Mass'', Springer Tracts in Modern Physics, ed. by G. Altarelli and K. Winter, references adde

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Synergies between the first-generation JHF-SK and NuMI superbeam experiments

    Get PDF
    We discuss synergies in the combination of the first-generation JHF to Super-Kamiokande and NuMI off-axis superbeam experiments. With synergies we mean effects which go beyond simply adding the statistics of the two experiments. As a first important result, we do not observe interesting synergy effects in the combination of the two experiments as they are planned right now. However, we find that with minor modifications, such as a different NuMI baseline or a partial antineutrino running, one could do much richer physics with both experiments combined. Specifically, we demonstrate that one could, depending on the value of the solar mass squared difference, either measure the sign of the atmospheric mass squared difference or CP violation already with the initial stage experiments. Our main results are presented in a way that can be easily interpreted in terms of the forthcoming KamLAND result.Comment: 29 pages, 10 figure

    Telling three from four neutrinos at the Neutrino Factory

    Get PDF
    We upgrade the study of the physical reach of a Neutrino Factory considering the possibility to distinguish a three (active) neutrino oscillation scenario from the scenario in which a light sterile neutrino is also present. The distinction is easily performed in the so--called 2+2 scheme, but also in the more problematic 3+1 scheme it can be attained in some regions of the parameter space. We also discuss the CP violating phase determination, showing that the effects of a large phase in the three--neutrino theory cannot be reproduced in a four--neutrino, CP conserving, model.Comment: 21 Latex2e pages, 9 figures using epsfig; minor changes and a footnote added, to be published on Nucl. Phys.

    \tau\to \mu \bar{\nu_i} \nu_i decay in the general two Higgs doublet model

    Full text link
    We study \tau\to \mu \bar{\nu_i} \nu_i, i=e,\mu,\tau decay in the model III version of the two Higgs doublet model. We calculated the BR at the order of the magnitude of 10^{-6}-10^{-4} for the intermediate values of the Yukawa couplings. Furthermore, we predict the upper limit of the coupling for the \tau-h^0 (A^0)-\tau transition as \sim 0.3 in the case that the BR is \sim 10^{-6}. We observe that the experimental result of the process under consideration can give comprehensive information about the physics beyond the standard model and the free parameters existing.Comment: 9 pages, 5 figure
    corecore