564 research outputs found
Particle Transportation Using Programmable Electrode Arrays
This study presents a technique to manipulate particles in microchannels using arrays of individually excitable electrodes. These electrodes were energized sequentially to form a non-uniform electric field that moved along the microchannel. The non-uniform electric field caused dielectrophoresis to make polarized particles move. This technique was demonstrated using viable yeast cells in a suspending medium with different conductivities. The viable yeast cells experienced positive dielectrophoresis and negative dielectrophoresis in medium conductivity of 21.5 μS/cm and 966 μS/cm respectively. The experimental results indicate that the cells can be transported in either condition using the proposed technique.Singapore-MIT Alliance (SMA
Investigation of the Dimensional Variation of Microstructures Through the μMIM Process
The mass production of components with dimensions in the micron and sub-micron range is anticipated to be one of the leading technology areas for the present century and to be of high market potential. Micro metal injection molding (μMIM) has the potential to be an important contributor to this industry as it can produce precise metallic microstructures in large quantities at a relatively low production cost. The μMIM process is a miniaturization of metal injection molding (MIM) methods. The process comprises of four main steps: mixing, injection molding, debinding and sintering. A metallic powder is mixed with a binder system to form the feedstock. The feedstock is then
injection molded into the required shape and the binder removed via thermal or other means. The final microstructures are obtained by sintering the remaining powder in a controlled
environment. In this work, the dimensional variation of the microstructures, in particular the warpage, roughness and volume variation, at each stage of the μMIM process was quantified and compared. The results of a preliminary study of the sensitivity of warpage of the microstructures to the
packing pressure are also reported.Singapore-MIT Alliance (SMA
Phase appearance or disappearance in two-phase flows
This paper is devoted to the treatment of specific numerical problems which
appear when phase appearance or disappearance occurs in models of two-phase
flows. Such models have crucial importance in many industrial areas such as
nuclear power plant safety studies. In this paper, two outstanding problems are
identified: first, the loss of hyperbolicity of the system when a phase appears
or disappears and second, the lack of positivity of standard shock capturing
schemes such as the Roe scheme. After an asymptotic study of the model, this
paper proposes accurate and robust numerical methods adapted to the simulation
of phase appearance or disappearance. Polynomial solvers are developed to avoid
the use of eigenvectors which are needed in usual shock capturing schemes, and
a method based on an adaptive numerical diffusion is designed to treat the
positivity problems. An alternate method, based on the use of the hyperbolic
tangent function instead of a polynomial, is also considered. Numerical results
are presented which demonstrate the efficiency of the proposed solutions
Recommended from our members
On the statistical modeling of persistence in total ozone anomalies
Geophysical time series sometimes exhibit serial correlations that are stronger than can be captured by the commonly used first‐order autoregressive model. In this study we demonstrate that a power law statistical model serves as a useful upper bound for the persistence of total ozone anomalies on monthly to interannual timescales. Such a model is usually characterized by the Hurst exponent. We show that the estimation of the Hurst exponent in time series of total ozone is sensitive to various choices made in the statistical analysis, especially whether and how the deterministic (including periodic) signals are filtered from the time series, and the frequency range over which the estimation is made. In particular, care must be taken to ensure that the estimate of the Hurst exponent accurately represents the low‐frequency limit of the spectrum, which is the part that is relevant to long‐term correlations and the uncertainty of estimated trends. Otherwise, spurious results can be obtained. Based on this analysis, and using an updated equivalent effective stratospheric chlorine (EESC) function, we predict that an increase in total ozone attributable to EESC should be detectable at the 95% confidence level by 2015 at the latest in southern midlatitudes, and by 2020–2025 at the latest over 30°–45°N, with the time to detection increasing rapidly with latitude north of this range
Recommended from our members
Impact of long-range correlations on trend detection in total ozone
Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed
Nanostructures Technology, Research, and Applications
Contains reports on twenty-four research projects and a list of publications.Joint Services Electronics Program Grant DAAHO4-95-1-0038Defense Advanced Research Projects Agency/Semiconductor Research Corporation SA1645-25508PGU.S. Army Research Office Grant DAAHO4-95-1-0564Defense Advanced Research Projects Agency/U.S. Navy - Naval Air Systems Command Contract N00019-95-K-0131Suss Advanced Lithography P. O. 51668National Aeronautics and Space Administration Contract NAS8-38249National Aeronautics and Space Administration Grant NAGW-2003Defense Advanced Research Projects Agency/U.S. Army Research Office Grant DAAHO4-951-05643M CorporationDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Contract N66001-97-1-8909National Science Foundation Graduate FellowshipU.S. Army Research Office Contract DAAHO4-94-G-0377National Science Foundation Contract DMR-940034National Science Foundation Grant DMR 94-00334Defense Advanced Research Projects Agency/U.S. Air Force - Office of Scientific Research Contract F49620-96-1-0126Harvard-Smithsonian Astrophysical Observatory Contract SV630304National Aeronautics and Space Administration Grant NAG5-5105Los Alamos National Laboratory Contract E57800017-9GSouthwest Research Institute Contract 83832MIT Lincoln Laboratory Advanced Concepts ProgramMIT Lincoln Laboratory Contract BX-655
Natural selection on cork oak: allele frequency reveals divergent selection in cork oak populations along a temperature cline
A recent study of population divergence at neutral markers and adaptive traits in cork oak has observed an association between genetic distances at locus QpZAG46 and genetic distances for leaf size and growth. In that study it was proposed that certain loci could be linked to genes encoding for adaptive traits in cork oak and, thus, could be used in adaptation studies. In order to investigate this hypothesis, here we (1) looked for associations between molecular markers and a set of adaptive traits in cork oak, and (2) explored the effects of the climate on among-population patterns in adaptive traits and molecular markers. For this purpose, we chose 9-year-old plants originating from thirteen populations spanning a broad range of climatic conditions. Plants established in a common garden site were genotyped at six nuclear microsatellites and phenotypically characterized for six functional traits potentially related to plant performance. Our results supported the proposed linkage between locus QpZAG46 and genes encoding for leaf size and growth. Temperature caused adaptive population divergence in leaf size and growth, which was expressed as differences in the frequencies of the alleles at locus QpZAG46
Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
- …
