585 research outputs found
Control of the woolly apple aphid (Erisoma lanigerum Hausm.) by releasing earwigs (Forficula auricularia L.) and support oil applications - an interim report of first year results
The woolly apple aphid (Erisoma lanigerum Hausm.) has been recognised for some years as
a serious pest in organic fruit growing where they may cause severe economic damage due
to a lack of control strategies. Based on preliminary results a new project has been started in
2007 testing combinations of releasing earwigs and oil applications in order to develop an onfarm
control strategy. In this paper we present preliminary results of the first year of the
project´s field trials. They showed good efficacies for applying oil preparations by brush. The
efficacy of releasing earwigs depended on the infestation intensity
A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level
We report on a measurement of the absorption length of scintillation light in
liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We
inject controlled quantities of nitrogen into a high purity volume of liquid
argon and monitor the light yield from an alpha source. The source is placed at
different distances from a cryogenic photomultiplier tube assembly. By
comparing the light yield from each position we extract the absorption cross
section of nitrogen. We find that nitrogen absorbs argon scintillation light
with strength of ,
corresponding to an absorption cross section of . We obtain the relationship
between absorption length and nitrogen concentration over the 0 to 50 ppm range
and discuss the implications for the design and data analysis of future large
liquid argon time projection chamber (LArTPC) detectors. Our results indicate
that for a current-generation LArTPC, where a concentration of 2 parts per
million of nitrogen is expected, the attenuation length due to nitrogen will be
meters.Comment: v2: Correct mistake in molecular absorption cross section
calculation, and a minor typo in fig
Anode-Coupled Readout for Light Collection in Liquid Argon TPCs
This paper will discuss a new method of signal read-out from photon detectors
in ultra-large, underground liquid argon time projection chambers. In this
design, the signal from the light collection system is coupled via capacitive
plates to the TPC wire-planes. This signal is then read out using the same
cabling and electronics as the charge information. This greatly benefits light
collection: it eliminates the need for an independent readout, substantially
reducing cost; It reduces the number of cables in the vapor region of the TPC
that can produce impurities; And it cuts down on the number of feed-throughs in
the cryostat wall that can cause heat-leaks and potential points of failure. We
present experimental results that demonstrate the sensitivity of a LArTPC wire
plane to photon detector signals. We also simulate the effect of a 1 s
shaping time and a 2 MHz sampling rate on these signals in the presence of
noise, and find that a single photoelectron timing resolution of 30 ns
can be achieved.Comment: 16 pages, 15 figure
Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems
Scintillation light produced in liquid argon (LAr) must be shifted from 128
nm to visible wavelengths in light detection systems used for liquid argon
time-projection chambers (LArTPCs). To date, LArTPC light collection systems
have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes
(PMTs) or plates placed in front of the PMTs. Recently, a new approach using
TPB-coated light guides was proposed. In this paper, we report on light guides
with improved attenuation lengths above 100 cm when measured in air. This is an
important step in the development of meter-scale light guides for future
LArTPCs. Improvements come from using a new acrylic-based coating,
diamond-polished cast UV transmitting acrylic bars, and a hand-dipping
technique to coat the bars. We discuss a model for connecting bar response in
air to response in liquid argon and compare this to data taken in liquid argon.
The good agreement between the prediction of the model and the measured
response in liquid argon demonstrates that characterization in air is
sufficient for quality control of bar production. This model can be used in
simulations of light guides for future experiments.Comment: 25 pages, 20 figure
The Effects of Dissolved Methane upon Liquid Argon Scintillation Light
In this paper we report on measurements of the effects of dissolved methane
upon argon scintillation light. We monitor the light yield from an alpha source
held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is
injected into a high-purity liquid argon volume. We observe significant
suppression of the scintillation light yield by dissolved methane at the 10
part per billion (ppb) level. By examining the late scintillation light time
constant, we determine that this loss is caused by an absorption process and
also see some evidence of methane-induced scintillation quenching at higher
concentrations (50-100 ppb). Using a second PMT assembly we look for visible
re-emission features from the dissolved methane which have been reported in
gas-phase argon methane mixtures, and we find no evidence of visible
re-emission from liquid-phase argon methane mixtures at concentrations between
10 ppb and 0.1%.Comment: 18 pages, 11 figures Updated to match published versio
Cyclotrons as Drivers for Precision Neutrino Measurements
As we enter the age of precision measurement in neutrino physics, improved
flux sources are required. These must have a well-defined flavor content with
energies in ranges where backgrounds are low and cross section knowledge is
high. Very few sources of neutrinos can meet these requirements. However,
pion/muon and isotope decay-at-rest sources qualify. The ideal drivers for
decay-at-rest sources are cyclotron accelerators, which are compact and
relatively inexpensive. This paper describes a scheme to produce decay-at-rest
sources driven by such cyclotrons, developed within the DAEdALUS program.
Examples of the value of the high precision beams for pursuing Beyond Standard
Model interactions are reviewed. New results on a combined DAEdALUS--Hyper-K
search for CP-violation that achieve errors on the mixing matrix parameter of 4
degrees to 12 degrees are presented.Comment: This paper was invited by the journal Advances in High Energy Physics
for their upcoming special issue on "Neutrino Masses and Oscillations," which
will be published on the 100th anniversary of Pontecorvo's birt
A Model for the Global Quantum Efficiency for a TPB-based Wavelength-Shifting System used with Photomultiplier Tubes in Liquid Argon in MicroBooNE
We present a model for the Global Quantum Efficiency (GQE) of the MicroBooNE
optical units. An optical unit consists of a flat, circular acrylic plate,
coated with tetraphenyl butadiene (TPB), positioned near the photocathode of a
20.2-cm diameter photomultiplier tube. The plate converts the ultra-violet
scintillation photons from liquid argon into visible-spectrum photons to which
the cryogenic phototubes are sensitive. The GQE is the convolution of the
efficiency of the plates that convert the 128 nm scintillation light from
liquid argon to visible light, the efficiency of the shifted light to reach the
photocathode, and the efficiency of the cryogenic photomultiplier tube. We
develop a GEANT4-based model of the optical unit, based on first principles,
and obtain the range of probable values for the expected number of detected
photoelectrons () given the known systematic errors on the
simulation parameters. We compare results from four measurements of the determined using alpha-particle sources placed at two distances from a
TPB-coated plate in a liquid argon cryostat test stand. We also directly
measured the radial dependence of the quantum efficiency, and find that this
has the same shape as predicted by our model. Our model results in a GQE of
for the MicroBooNE optical units. While the information shown
here is MicroBooNE specific, the approach to the model and the collection of
simulation parameters will be widely applicable to many liquid-argon-based
light collection systems.Comment: final version accepted for publication by JINS
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume
- …
