986 research outputs found
Oxygen-stripes in La0.5Ca0.5MnO3 from ab initio calculations
We investigate the electronic, magnetic and orbital properties of
La0.5Ca0.5MnO3 perovskite by means of an ab initio electronic structure
calculation within the Hartree-Fock approximation. Using the experimental
crystal structure reported by Radaelli et al. [Phys. Rev B 55, 3015 (1997)], we
find a charge-ordering stripe-like ground state. The periodicity of the
stripes, and the insulating CE-type magnetic structure are in agreement with
neutron x-ray and electron diffraction experiments. However, the detailed
structure is more complex than that envisaged by simple models of charge and
orbital order on Mn d-levels alone, and is better described as a charge-density
wave of oxygen holes, coupled to the Mn spin/orbital order.Comment: 4 pages, 3 figures. Version accepted for publication in PR
Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation
The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3– 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. m
Jastrow correlation factor for atoms, molecules, and solids
A form of Jastrow factor is introduced for use in quantum Monte Carlo
simulations of finite and periodic systems. Test data are presented for atoms,
molecules, and solids, including both all-electron and pseudopotential atoms.
We demonstrate that our Jastrow factor is able to retrieve a large fraction of
the correlation energy
Unrestricted Hartree-Fock theory of Wigner crystals
We demonstrate that unrestricted Hartree-Fock theory applied to electrons in
a uniform potential has stable Wigner crystal solutions for in
two dimensions and in three dimensions. The correlation energies
of the Wigner crystal phases are considerably smaller than those of the fluid
phases at the same density.Comment: 4 pages, 5 figure
Personal protective equipment solution for UK military medical personnel working in an Ebola virus disease treatment unit in Sierra Leone.
The combination of personal protective equipment (PPE) together with donning and doffing protocols was designed to protect British and Canadian military medical personnel in the Kerry Town Ebola Treatment Unit (ETU) in Sierra Leone. The PPE solution was selected to protect medical staff from infectious risks, notably Ebola virus, and chemical (hypochlorite) exposure. PPE maximized dexterity, enabled personnel to work in hot temperatures for periods of up to 2h, protected mucosal membranes when doffing outer layers, and minimized potential contamination of the doffing area with infectious material by reducing the requirement to spray PPE with hypochlorite. The ETU was equipped to allow medical personnel to provide a higher level of care than witnessed in many existing ETUs. This assured personnel working as part of the international response that they would receive as close to Western treatment standards as possible if they were to contract Ebola virus disease (EVD). PPE also enabled clinical interventions that are not seen routinely in West African EVD treatment regimens, whilst providing a robust protective barrier. Competency in using PPE was developed during a nine-day pre-deployment training programme. This allowed over 60 clinical personnel per deployment to practice skills in PPE in a simulated ETU and in classrooms. Overall, the training provided: (i) an evidence base underpinning the PPE solution chosen; (ii) skills in donning and doffing of PPE; (iii) personnel confidence in the selected PPE; and (iv) quantifiable testing of each individual's capability to don PPE, perform tasks and doff PPE safely
Entorhinal cortex volume in older adults: Reliability and validity considerations for three published measurement protocols
Glycogen Content Regulates Peroxisome Proliferator Activated Receptor-∂ (PPAR-∂) Activity in Rat Skeletal Muscle
Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise
Transition metal materials: a first principles approach to the electronic structure of the insulating phase
Recent progress in the application of first principles theory to the electronic structure of transition metal materials is reviewed with particular emphasis on the use of the exact exchange interaction. The success of this approach is exemplified by calculations on a range of materials: simple monoxides, chromium cyanides and perovskite structure copper fluorides. The reliability of computed properties is established for lattice structures, spin-couplings, spin-lattice interactions, orbital ordering effects and the changes in the ground state induced by hole doping.</p
Muonium as a hydrogen analogue in silicon and germanium; quantum effects and hyperfine parameters
We report a first-principles theoretical study of hyperfine interactions,
zero-point effects and defect energetics of muonium and hydrogen impurities in
silicon and germanium. The spin-polarized density functional method is used,
with the crystalline orbitals expanded in all-electron Gaussian basis sets. The
behaviour of hydrogen and muonium impurities at both the tetrahedral and
bond-centred sites is investigated within a supercell approximation. To
describe the zero-point motion of the impurities, a double adiabatic
approximation is employed in which the electron, muon/proton and host lattice
degrees of freedom are decoupled. Within this approximation the relaxation of
the atoms of the host lattice may differ for the muon and proton, although in
practice the difference is found to be slight. With the inclusion of zero-point
motion the tetrahedral site is energetically preferred over the bond-centred
site in both silicon and germanium. The hyperfine and superhyperfine
parameters, calculated as averages over the motion of the muon, agree
reasonably well with the available data from muon spin resonance experiments.Comment: 20 pages, including 9 figures. To appear in Phys. Rev.
Order in de Broglie - Bohm quantum mechanics
A usual assumption in the so-called {\it de Broglie - Bohm} approach to
quantum dynamics is that the quantum trajectories subject to typical `guiding'
wavefunctions turn to be quite irregular, i.e. {\it chaotic} (in the dynamical
systems' sense). In the present paper, we consider mainly cases in which the
quantum trajectories are {\it ordered}, i.e. they have zero Lyapunov
characteristic numbers. We use perturbative methods to establish the existence
of such trajectories from a theoretical point of view, while we analyze their
properties via numerical experiments. Using a 2D harmonic oscillator system, we
first establish conditions under which a trajectory can be shown to avoid close
encounters with a moving nodal point, thus avoiding the source of chaos in this
system. We then consider series expansions for trajectories both in the
interior and the exterior of the domain covered by nodal lines, probing the
domain of convergence as well as how successful the series are in comparison
with numerical computations or regular trajectories. We then examine a
H\'{e}non - Heiles system possessing regular trajectories, thus generalizing
previous results. Finally, we explore a key issue of physical interest in the
context of the de Broglie - Bohm formalism, namely the influence of order in
the so-called {\it quantum relaxation} effect. We show that the existence of
regular trajectories poses restrictions to the quantum relaxation process, and
we give examples in which the relaxation is suppressed even when we consider
initial ensembles of only chaotic trajectories, provided, however, that the
system as a whole is characterized by a certain degree of order.Comment: 25 pages, 12 figure
- …
