2,406 research outputs found

    The halo masses and galaxy environments of hyperluminous QSOs at z~2.7 in the Keck Baryonic Structure Survey

    Get PDF
    We present an analysis of the galaxy distribution surrounding 15 of the most luminous (>10^{14} L_sun; M_1450 ~ -30) QSOs in the sky with z~2.7. Our data are drawn from the Keck Baryonic Structure Survey (KBSS). In this work, we use the positions and spectroscopic redshifts of 1558 galaxies that lie within ~3', (4.2 h^{-1} comoving Mpc; cMpc) of the hyperluminous QSO (HLQSO) sightline in one of 15 independent survey fields, together with new measurements of the HLQSO systemic redshifts. We measure the galaxy-HLQSO cross-correlation function, the galaxy-galaxy autocorrelation function, and the characteristic scale of galaxy overdensities surrounding the sites of exceedingly rare, extremely rapid, black hole accretion. On average, the HLQSOs lie within significant galaxy overdensities, characterized by a velocity dispersion sigma_v ~ 200 km s^{-1} and a transverse angular scale of ~25", (~200 physical kpc). We argue that such scales are expected for small groups with log(M_h/M_sun)~13. The galaxy-HLQSO cross-correlation function has a best-fit correlation length r_0_GQ = (7.3 \pm 1.3) h^{-1} cMpc, while the galaxy autocorrelation measured from the spectroscopic galaxy sample in the same fields has r_0_GG = (6.0 \pm 0.5) h^{-1} cMpc. Based on a comparison with simulations evaluated at z ~ 2.6, these values imply that a typical galaxy lives in a host halo with log(M_h/M_sun) = 11.9\pm0.1, while HLQSOs inhabit host halos of log(M_h/M_sun) = 12.3\pm0.5. In spite of the extremely large black hole masses implied by their observed luminosities [log(M_BH/M_sun) > 9.7], it appears that HLQSOs do not require environments very different from their much less luminous QSO counterparts. Evidently, the exceedingly low space density of HLQSOs (< 10^{-9} cMpc^{-3}) results from a one-in-a-million event on scales << 1 Mpc, and not from being hosted by rare dark matter halos.Comment: 15 pages, 6 figures. Accepted for publication in Ap

    The Spectroscopic Properties of Ly{\alpha}-Emitters at z \approx 2.7: Escaping Gas and Photons from Faint Galaxies

    Get PDF
    We present a spectroscopic survey of 318 faint (R27(R\sim 27, L0.1L)L\sim0.1L_*), Ly{\alpha}-emission-selected galaxies (LAEs) at 2.5<z<3. A sample of 32 LAEs with rest-frame optical spectra from Keck/MOSFIRE are used to interpret the LAE spectra in the context of their systemic redshifts. We find that the Ly{\alpha} emission of LAEs is typically less spectrally extended than among samples of more luminous continuum-selected galaxies (LBGs) at similar redshifts. Using the MOSFIRE subsample, we find that the peak of the Ly{\alpha} line is shifted by +200 km/s with respect to systemic across a diverse set of galaxies including both LAEs and LBGs. We also find a small number of objects with significantly blueshifted Ly{\alpha} emission, a potential indicator of accreting gas. The Ly{\alpha}-to-H{\alpha} line ratios suggest that the LAEs have Ly{\alpha} escape fractions fesc,Lyα30f_{\rm esc,Ly{\alpha}} \approx 30%, significantly higher than typical LBG samples. Using redshifts calibrated by our MOSFIRE sample, we construct composite LAE spectra, finding the first evidence for metal-enriched outflows in such intrinsically-faint high-redshift galaxies. These outflows have smaller continuum covering fractions (fc0.3)(f_c \approx 0.3) and velocities (vave100200(v_{\rm ave} \approx 100-200 km/s, vmax500v_{\rm max} \approx 500 km/s)) than those associated with typical LBGs, suggesting that gas covering fraction is a likely driver of the high Ly{\alpha} and Ly-continuum escape fractions of LAEs. Our results suggest a similar scaling of outflow velocity with star formation rate as is observed at lower redshifts (voutflowSFR0.25)(v_{\rm outflow} \sim {\rm SFR}^{0.25}) and indicate that a substantial fraction of gas is ejected with v>vescv > v_{esc}

    The Keck Lyman Continuum Spectroscopic Survey (KLCS): The Emergent Ionizing Spectrum of Galaxies at z3z\sim3

    Get PDF
    We present results of a deep spectroscopic survey designed to quantify the statistics of the escape of ionizing photons from star-forming galaxies at z~3. We measure the ratio of ionizing to non-ionizing UV flux density _obs, where f900 is the mean flux density evaluated over the range [880,910] A. We quantify the emergent ratio of ionizing to non-ionizing UV flux density by analyzing high-S/N composite spectra formed from sub-samples with common observed properties and numbers sufficient to reduce the statistical uncertainty in the modeled IGM+CGM correction to obtain precise values of _out, including a full-sample average _out=0.057±0.0060.057\pm0.006. We further show that _out increases monotonically with Lyα\alpha rest equivalent width, inducing an inverse correlation with UV luminosity as a by-product. We fit the composite spectra using stellar spectral synthesis together with models of the ISM in which a fraction f_c of the stellar continuum is covered by gas with column density N(HI). We show that the composite spectra simultaneously constrain the intrinsic properties of the stars (L900/L1500)_int along with f_c, N(HI), E(B-V), and fesc,absf_{esc,abs}, the absolute escape fraction of ionizing photons. We find a sample-averaged fesc,abs=0.09±0.01f_{esc,abs} =0.09\pm0.01, and that subsamples fall along a linear relation fesc,abs0.75[W(Lyα)/110A]\langle f_{esc,abs}\rangle \sim 0.75[W(Ly\alpha)/110 A]. We use the FUV luminosity function, the distribution function n[W(Lyα)]n[W(Ly\alpha)], and the relationship between W(Lyα)W(Ly\alpha) and _out to estimate the total ionizing emissivity of z3z\sim3 star-forming galaxies with Muv < -19.5: ϵLyC6×1024\epsilon_{LyC}\sim 6\times10^{24} ergs/s/Hz/Mpc3^3, exceeding the contribution of QSOs by a factor of 3\sim 3, and accounting for 50\sim50% of the total ϵLyC\epsilon_{LyC} at z3z\sim3 estimated using indirect methods.Comment: 45 pages, 31 figures, ApJ, in pres
    corecore