102 research outputs found
Immunotherapy of invasive fungal infection in hematopoietic stem cell transplant recipients
Despite the availability of new antifungal compounds, invasive fungal infection remains a significant cause of morbidity and mortality in children and adults undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Allogeneic HSCT recipients suffer from a long lasting defect of different arms of the immune system, which increases the risk for and deteriorates the prognosis of invasive fungal infections. In turn, advances in understanding these immune deficits have resulted in promising strategies to enhance or restore critical immune functions in allogeneic HSCT recipients. Potential approaches include the administration of granulocytes, since neutropenia is the single most important risk factor for invasive fungal infection, and preliminary clinical results suggest a benefit of adoptively transferred donor-derived antifungal T cells. In vitro data and animal studies demonstrate an antifungal effect of natural killer cells, but clinical data are lacking to date. This review summarizes and critically discusses the available data of immunotherapeutic strategies in allogeneic HSCT recipients suffering from invasive fungal infection
Deceptive Sexualities, Nonconformity, and Racial Binaries: An Examination of ‘Appearances’ in America during World War II
World War II brought issues of gender, sexuality, disability, and race into the spotlight of American civic life. The war effort united Americans under the guise of defeating Nazism in Europe, while also highlighting existing fractures among racial and gender demographics. While thorough, the historiography of this phenomenon has largely undervalued the fundamental through-line: the importance of appearances. To control undesirable identities while maintaining the war effort and perceptions of a strong, united, heteronormative America, the U.S. military attempted, and ultimately failed, to manipulate appearances of sexuality, disability, and race. This paper examines the existing historiography on attempts to control, categorize, and subjugate sexuality, disabilities, race and gender during World War II in order to unveil the underlying and connecting theme of appearances across diverse texts
Pathogen-reactive T helper cell analysis in the pig
There is growing interest in studying host-pathogen interactions in human-relevant large animal models such as the pig. Despite the progress in developing immunological reagents for porcine T cell research, there is an urgent need to directly assess pathogen-specific T cells-an extremely rare population of cells, but of upmost importance in orchestrating the host immune response to a given pathogen. Here, we established that the activation marker CD154 (CD40L), known from human and mouse studies, identifies also porcine antigen-reactive CD4(+) T lymphocytes. CD154 expression was upregulated early after antigen encounter and CD4(+)CD154(+) antigen-reactive T cells coexpressed cytokines. Antigen-induced expansion and autologous restimulation enabled a time-and dose-resolved analysis of CD154 regulation and a significantly increased resolution in phenotypic profiling of antigen-responsive cells. CD154 expression identified T cells responding to staphylococcal Enterotoxin B superantigen stimulation as well as T cells responding to the fungus Candida albicans and T cells specific for a highly prevalent intestinal parasite, the nematode Ascaris suum during acute and trickle infection. Antigen-reactive T cells were further detected after immunization of pigs with a single recombinant bacterial antigen of Streptococcus suis only. Thus, our study offers new ways to study antigen-specific T lymphocytes in the pig and their contribution to host-pathogen interactions
Illuminating nature's beauty: modular, scalable and low-cost LED dome illumination system using 3D-printing technology
Presenting your research in the proper light can be exceptionally challenging. Meanwhile, dome illumination systems became a standard for micro- and macrophotography in taxonomy, morphology, systematics and especially important in natural history collections. However, proper illumination systems are either expensive and/or laborious to use. Nowadays, 3D-printing technology revolutionizes lab-life and will soon find its way into most people's everyday life. Consequently, fused deposition modelling printers become more and more available, with online services offering personalized printing options. Here, we present a 3D-printed, scalable, low-cost and modular LED illumination dome system for scientific micro- and macrophotography. We provide stereolithography ('.stl') files and print settings, as well as a complete list of necessary components required for the construction of three differently sized domes. Additionally, we included an optional iris diaphragm and a sliding table, to arrange the object of desire inside the dome. The dome can be easily scaled and modified by adding customized parts, allowing you to always present your research object in the best light
Getting grip in changing environments:the effect of friction anisotropy inversion on robot locomotion
Legged locomotion of robots can be greatly improved by bioinspired tribological structures and by applying the principles of computational morphology to achieve fast and energy-efficient walking. In a previous research, we mounted shark skin on the belly of a hexapod robot to show that the passive anisotropic friction properties of this structure enhance locomotion efficiency, resulting in a stronger grip on varying walking surfaces. This study builds upon these results by using a previously investigated sawtooth structure as a model surface on a legged robot to systematically examine the influences of different material and surface properties on the resulting friction coefficients and the walking behavior of the robot. By employing different surfaces and by varying the stiffness and orientation of the anisotropic structures, we conclude that with having prior knowledge about the walking environment in combination with the tribological properties of these structures, we can greatly improve the robot’s locomotion efficiency.</p
Strength anisotropy at soil-structure interfaces with snake skin inspired structural surfaces
Fin Ray Crossbeam Angles for Efficient Foot Design for Energy-Efficient Robot Locomotion
Robot foot and gripper structures with compliancy using different mechanical solutions have been developed to enhance proper contact formations and gripping on various substrates. The Fin Ray structure is one of the solutions. Although the Fin Ray effect has been proposed and exploited, no detailed investigation has been conducted on the effect of different crossbeam angles inside its frame. Thus, herein, an integrative approach is used, combining 3D printing with soft material, finite element modeling, and neural control to 1) manufacture the Fin Ray structure with compliancy; 2) investigate the effect of different crossbeam angles under different loads and cylindrical substrates; and 3) finally apply it as an efficient compliant robot foot structure for energy-efficient on-pipe locomotion. Considering the factors of a large contact area, high energy efficiency, and better durability, the Fin Ray model with nonstandard 10°-inclined crossbeams provides the best compromise in comparison with other models, within the constraints of the defined geometric parameters
Fungal vaccines and immunotherapeutics: current concepts and future challenges
Purpose of review The remarkable advances in modern medicine have paradoxically resulted in a rapidly expanding population of immunocompromised patients displaying extreme susceptibility to life-threatening fungal infections. There are currently no licensed vaccines, and the prophylaxis and therapy of fungal infections in at-risk individuals remains challenging, contributing to undesirable mortality and morbidity rates. The design of successful antifungal preventive approaches has been hampered by an insufficient understanding of the dynamics of the host-fungus interaction and the mechanisms that underlie heterogenous immune responses to vaccines and immunotherapy. Recent findings Recent advances in proteomics and glycomics have contributed to the identification of candidate antigens for use in subunit vaccines, novel adjuvants, and delivery systems to boost the efficacy of protective vaccination responses that are becoming available, and several targets are being exploited in immunotherapeutic approaches. Summary We review some of the emerging concepts as well as the inherent challenges to the development of fungal vaccines and immunotherapies to protect at-risk individuals.ThisworkwassupportedbytheNorthernPortugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) (NORTE-01-0145-FEDER-000013), and the Fundação para a Ciência e Tecnologia (FCT) (contracts IF/00735/ 2014 to A.C., and SFRH/BPD/96176/2013 to C.C).info:eu-repo/semantics/publishedVersio
An experimental-numerical study of the adhesive static and dynamic friction of micro-patterned soft polymer surfaces
New possibilities have emerged in recent years, with the development of high-precision fabrication techniques, to exploit microscale surface patterning to modify tribological properties of polymeric materials. However, the effect of surface topography, together with material mechanical parameters, needs to be fully understood to allow the design of surfaces with the desired characteristics. In this paper, we experimentally assess the effect of various types of micropatterned Polydimethylsiloxane surfaces, including anisotropic ones, on macroscopic substrate friction properties. We find that it is possible, through surface patterning, to modify both static and dynamic friction coefficients of the surfaces, demonstrating the possibility of achieving tunability. Additionally, we compare experimental observations with the numerical predictions of a 2D Spring-Block model, deriving the material parameters from tests on the corresponding flat surfaces. We find a good quantitative agreement between calculated and measured trends for various micropattern geometries, demonstrating that the proposed numerical approach can reliably describe patterned surfaces when appropriate material parameters are used. The presented results can further contribute to the description and understanding of the frictional effects of surface patterning, with the aim of achieving surfaces with extreme tunability of tribological propertie
Rapid generation of clinical-grade antiviral T cells: selection of suitable T-cell donors and GMP-compliant manufacturing of antiviral T cells
- …
