1,413 research outputs found
New first trimester crown-rump length's equations optimized by structured data collection from a French general population
--- Objectives --- Prior to foetal karyotyping, the likelihood of Down's
syndrome is often determined combining maternal age, serum free beta-HCG,
PAPP-A levels and embryonic measurements of crown-rump length and nuchal
translucency for gestational ages between 11 and 13 weeks. It appeared
important to get a precise knowledge of these scan parameters' normal values
during the first trimester. This paper focused on crown-rump length. ---
METHODS --- 402 pregnancies from in-vitro fertilization allowing a precise
estimation of foetal ages (FA) were used to determine the best model that
describes crown-rump length (CRL) as a function of FA. Scan measures by a
single operator from 3846 spontaneous pregnancies representative of the general
population from Northern France were used to build a mathematical model linking
FA and CRL in a context as close as possible to normal scan screening used in
Down's syndrome likelihood determination. We modeled both CRL as a function of
FA and FA as a function of CRL. For this, we used a clear methodology and
performed regressions with heteroskedastic corrections and robust regressions.
The results were compared by cross-validation to retain the equations with the
best predictive power. We also studied the errors between observed and
predicted values. --- Results --- Data from 513 spontaneous pregnancies allowed
to model CRL as a function of age of foetal age. The best model was a
polynomial of degree 2. Datation with our equation that models spontaneous
pregnancies from a general population was in quite agreement with objective
datations obtained from 402 IVF pregnancies and thus support the validity of
our model. The most precise measure of CRL was when the SD was minimal
(1.83mm), for a CRL of 23.6 mm where our model predicted a 49.4 days of foetal
age. Our study allowed to model the SD from 30 to 90 days of foetal age and
offers the opportunity of using Zscores in the future to detect growth
abnormalities. --- Conclusion --- With powerful statistical tools we report a
good modeling of the first trimester embryonic growth in the general population
allowing a better knowledge of the date of fertilization useful in the
ultrasound screening of Down's syndrome. The optimal period to measure CRL and
predict foetal age was 49.4 days (9 weeks of gestational age). Our results open
the way to the detection of foetal growth abnormalities using CRL Zscores
throughout the first trimester
Carbon nanotube four-terminal devices for pressure sensing applications
Carbon nanotubes (CNTs) are of high interest for sensing applications,owing to their superior mechanical strength, high Young’s modulus and low density. In this work, we report on a facile approach for the fabrication of carbon nanotube devices using a four terminal configuration. Oriented carbon nanotube films were pulled out from a CNT forest wafer and then twisted into a yarn. Both the CNT film and yarn were arranged on elastomer membranes/diaphragms which were arranged on a laser cut acrylic frame to form pressure sensors. The sensors were calibrated using a precisely controlled pressure system, showing a large change of the output voltage of approximately 50 mV at a constant supply current of 100 μA and under a low applied pressure of 15 mbar. The results indicate the high potential of using CNT films and yarns for pressure sensing applications
Recommended from our members
Experimental Research on the Shear Connectors in Foam Concrete
In order to improve the longitudinal shear resistance between foam concrete and C-Channels, an investigation is carried out on the shear connectors in foam concrete with cold-formed steel double C-Channels embedment. Twenty-four tests have been carried out in two groups. Two types of connectors: flange connectors and web connectors are installed using self-drilling screws for a rapid construction. The experimental results show that they can effectively improve the longitudinal shear-resist capacity of the concrete. After the experiment, the specimens are dismantled for an interior observation. Based on the observation, the form of damage, the failure mechanism was discovered, and the equation of longitudinal shear capacity was developed. It is concluded that the failure involves independent slippage between two C-Channels and the shear connection fractures. Since the composite structure requires sufficient slip between the two materials, these types of shear connectors will have good enhancement for this type of composite structures subjected to dynamic loads
Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.
Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps
Peer reviewedPublisher PD
Management strategy after diagnosis of Abernethy malformation: a case report
<p>Abstract</p> <p>Introduction</p> <p>The Abernethy malformation is a rare anomaly with a widely variable clinical presentation. Many diagnostic dilemmas have been reported. Nowadays, with the evolution of medical imaging, diagnosis can be made more easily, but management of patients with an Abernethy malformation is still open for discussion.</p> <p>Case presentation</p> <p>In this case study, we describe a 34-year-old Caucasian man who presented with a large hepatocellular carcinoma in the presence of an Abernethy malformation, which was complicated by the development of pulmonary arterial hypertension.</p> <p>Conclusion</p> <p>This case underlines the importance of regular examination of patients with an Abernethy malformation, even in older patients, to prevent complications and to detect liver lesions at an early stage.</p
The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome
Germline mutations in the mismatch repair (MMR) genes are associated with Lynch syndrome, also known as hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Here, we characterise a variant of hMLH1 that confers a loss-of-function MMR phenotype. The mutation changes the highly conserved Gly67 residue to a glutamate (G67E) and is reminiscent of the hMLH1-p.Gly67Arg mutation, which is present in several Lynch syndrome cohorts. hMLH1-Gly67Arg has previously been shown to confer loss-of-function (Shimodaira et al, 1998), and two functional assays suggest that the hMLH1-Gly67Glu protein fails to sustain normal MMR functions. In the first assay, hMLH1-Gly67Glu abolishes the protein's ability to interfere with MMR in yeast. In the second assay, mutation of the analogous residue in yMLH1 (yMLH1-Gly64Glu) causes a loss-of-function mutator phenotype similar to yMLH1-Gly64Arg. Despite these molecular similarities, an unusual spectrum of tumours is associated with hMLH1-Gly67Glu, which is not typical of those associated with Lynch syndrome and differs from those found in families carrying the hMLH1-Gly67Arg allele. This suggests that hMLH1 may have different functions in certain tissues and/or that additional factors may modify the influence of hMLH1 mutations in causing Lynch syndrome
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application
Background:
Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor.
Results:
The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO.
Conclusions:
(Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect
- …
