12,532 research outputs found

    Doping change and distortion effect on double-exchange ferromagnetism

    Full text link
    Doping change and distortion effect on the double-exchange ferromagnetism are studied within a simplified double-exchange model. The presence of distortion is modelled by introducing the Falicov-Kimball interaction between itinerant electrons and classical variables. By employing the dynamical mean-field theory the charge and spin susceptibility are exactly calculated. It is found that there is a competition between the double-exchange induced ferromagnetism and disorder-order transition. At low temperature various long-range order phases such as charge ordered and segregated phases coexist with ferromagnetism depending on doping and distortion. A rich phase diagram is obtained.Comment: 8 pages, 8 figure

    Goos-Haenchen induced vector eigenmodes in a dome cavity

    Get PDF
    We demonstrate numerically calculated electromagnetic eigenmodes of a 3D dome cavity resonator that owe their shape and character entirely to the Goos-Haenchen effect. The V-shaped modes, which have purely TE or TM polarization, are well described by a 2D billiard map with the Goos-Haenchen shift included. A phase space plot of this augmented billiard map reveals a saddle-node bifurcation; the stable periodic orbit that is created in the bifurcation corresponds to the numerically calculated eigenmode, dictating the angle of its "V". A transition from a fundamental Gaussian to a TM V mode has been observed as the cavity is lengthened to become nearly hemispherical.Comment: 4 pages, 4 figure

    Charge-ordered ferromagnetic phase in manganites

    Full text link
    A mechanism for charge-ordered ferromagnetic phase in manganites is proposed. The mechanism is based on the double exchange in the presence of diagonal disorder. It is modeled by a combination of the Ising double-exchange and the Falicov-Kimball model. Within the dynamical mean-field theory the charge and spin correlation function are explicitely calculated. It is shown that the system exhibits two successive phase transitions. The first one is the ferromagnetic phase transition, and the second one is a charge ordering. As a result a charge-ordered ferromagnetic phase is stabilized at low temperature.Comment: To appear in Phys. Rev.

    Photoproduction of Baryons Decaying into N pi and N eta

    Full text link
    A combined analysis of photoproduction data on \gamma p to \pi N, eta N was performed including the data on K Lambda and K Sigma. The data are interpreted in an isobar model with s--channel baryon resonances and pi, rho,(omega), K, and K^* exchange in the t--channel. Three baryon resonances have a substantial coupling to eta N, the well known N(1535)S_{11}, N(1720)P_{13}, and N(2070)D_{15}. The inclusion of data with open strangeness reveals the presence of further new resonances, N(1840)P_{11}, N(1875)D_{13} and N(2170)D_{13}.Comment: 13 pages, 14 figure

    Hund's rule and metallic ferromagnetism

    Full text link
    We study tight-binding models of itinerant electrons in two different bands, with effective on-site interactions expressing Coulomb repulsion and Hund's rule. We prove that, for sufficiently large on-site exchange anisotropy, all ground states show metallic ferromagnetism: They exhibit a macroscopic magnetization, a macroscopic fraction of the electrons is spatially delocalized, and there is no energy gap for kinetic excitations.Comment: 17 page

    Resource Competition on Integral Polymatroids

    Full text link
    We study competitive resource allocation problems in which players distribute their demands integrally on a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a nondecreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.Comment: 17 page

    Photoproduction of mesons in nuclei at GeV energies

    Full text link
    In a transport model that combines initial state interactions of the photon with final state interactions of the produced particles we present a calculation of inclusive photoproduction of mesons in nuclei in the energy range from 1 to 7 GeV. We give predictions for the photoproduction cross sections of pions, etas, kaons, antikaons, and π+π\pi^+\pi^- invariant mass spectra in ^{12}C and ^{208}Pb. The effects of nuclear shadowing and final state interaction of the produced particles are discussed in detail.Comment: Text added in summary in general reliability of the method, references updated. Phys. Rev. C (2000) in pres

    Hexagonal dielectric resonators and microcrystal lasers

    Get PDF
    We study long-lived resonances (lowest-loss modes) in hexagonally shaped dielectric resonators in order to gain insight into the physics of a class of microcrystal lasers. Numerical results on resonance positions and lifetimes, near-field intensity patterns, far-field emission patterns, and effects of rounding of corners are presented. Most features are explained by a semiclassical approximation based on pseudointegrable ray dynamics and boundary waves. The semiclassical model is also relevant for other microlasers of polygonal geometry.Comment: 12 pages, 17 figures (3 with reduced quality

    On the exciton binding energy in a quantum well

    Full text link
    We consider a model describing the one-dimensional confinement of an exciton in a symmetrical, rectangular quantum-well structure and derive upper and lower bounds for the binding energy EbE_b of the exciton. Based on these bounds, we study the dependence of EbE_b on the width of the confining potential with a higher accuracy than previous reports. For an infinitely deep potential the binding energy varies as expected from 1Ry1 Ry at large widths to 4Ry4 Ry at small widths. For a finite potential, but without consideration of a mass mismatch or a dielectric mismatch, we substantiate earlier results that the binding energy approaches the value 1Ry1 Ry for both small and large widths, having a characteristic peak for some intermediate size of the slab. Taking the mismatch into account, this result will in general no longer be true. For the specific case of a Ga1xAlxAs/GaAs/Ga1xAlxAsGa_{1-x}Al_{x}As/GaAs/Ga_{1-x}Al_{x}As quantum-well structure, however, and in contrast to previous findings, the peak structure is shown to survive.Comment: 32 pages, ReVTeX, including 9 figure

    Production of n-propyl acetate by reactive distillation : experimental and theoretical study

    Get PDF
    First steps of the development of a catalytic reactive distillation process for the production of n-propyl acetate based on experiments and simulations are proposed. The kinetics for homogeneously (sulphuric acid) and heterogeneously (Amberlyst 15) catalysed reaction were investigated and the constants for a pseudo-homogeneous model are presented. Pilot plant experiments were performed using a homogeneous strong acid catalyst in a packed column. A top-column decanter is used to withdraw the aqueous phase and to reflux the organic phase. Simulation results are in good agreement with experimental data. Thermodynamics nonidealities are taken into account using VLE and LLE NRTL interaction parameters. Alcohol conversion and n-propyl acetate purity may be dramatically increased just by adding to the pilot plant a stripping section in an additional column: six different configurations are identified to achieve such a production. The startup is studied in order to determine the best strategy to achieve steady-state conditions. The strong influence of the composition of the initial charging in the decanter can be seen and an initial charging of the two-phase top product leads to the fastest startup
    corecore