20 research outputs found

    Improved 2-D attenuation analysis for Northern Italy using a merged dataset from selected regional seismic networks

    Full text link
    International audienceA merged, high-quality waveform dataset from different seismic networks has been used to improve our understanding of lateral seismic attenuation for Northern Italy. In a previous study on the same region, Morasca et al. (Bull Seismol Soc Am 98:1936-1946, 2008) were able to resolve only a small area due to limited data coverage. For this reason, the interpretation of the attenuation anomalies was difficult given the complexity of the region and the poor resolution of the available data. In order to better understand the lateral changes in the crustal structure and thickness of this region, we selected 770 earthquakes recorded by 54 stations for a total of almost 16,000 waveforms derived from seismic networks operating totally or partially in Northern Italy. Direct S-wave and coda attenuation images were obtained using an amplitude ratio technique that eliminates source terms from the formulation. Both direct and early-coda amplitudes are used as input for the inversions, and the results are compared. Results were obtained for various frequency bands ranging between 0.3 and 25.0 Hz and in all cases show significant improvement with respect to the previous study since the resolved area has been extended and more crossing paths have been used to image smaller scale anomalies. Quality-factor estimates are consistent with the regional tectonic structure exhibiting a general trend of low attenuation under the Po Plain basin and higher values for the Western Alps and Northern Apennines. The interpretation of the results for the Eastern Alps is not simple, possibly because our resolution for this area is still not adequate to resolve small-scale structures

    Flexural response of the Venetian foreland to the SouthAlpine tectonics along the TRANSALP profile.

    No full text
    Abstract: The Venetian Basin was affected by flexure related to the Southalpine shortening phase during the Middle Miocene-Early Pliocene. This downbending is quantified here using a two-dimensional flexural model. A recently improved data set on basin geometry based on the bottom of the Serravallian-Tortonian clastic wedge, on palaeobathymetry and gravity anomalies is used to constrain the components of flexure and to test the importance of the initial bathymetry in evaluating the contribution of surface loads to deflection. A good fit is obtained assuming a northward broken plate configuration of the downbent Adriatic plate with an effective elastic thickness of 20 km. Results highlight that, in the studied region, flexure related to the Eastern Southern Alps is totally due to surface loads (topographic load partly replacing initial bathymetry) and that no hidden loads are required. Furthermore, the palaeobathymetry contributes up to 50% to the total flexure in the studied region
    corecore