1,984 research outputs found
Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction
Adipocyte differentiation of bovine adipose-derived stem cells (ASC) was induced by foetal bovine serum (FBS), biotin, pantothenic acid, insulin, rosiglitazone, dexamethasone and 3-isobutyl-1-methylxanthine, followed by incubation in different media to test the influence of ascorbic acid (AsA), bovine serum lipids (BSL), FBS, glucose and acetic acid on transdifferentiation into functional adipocytes. Moreover, different culture plate coatings (collagen-A, gelatin-A or poly-L-lysine) were tested. The differentiated ASC were subjected to Nile red staining, DAPI staining, immunocytochemistry and quantitative reverse transcription PCR (for NT5E, THY1, ENG, PDGFRα, FABP4, PPARγ, LPL, FAS, GLUT4). Nile red quantification showed a significant increase in the development of lipid droplets in treatments with AsA and BSL without FBS. The presence of BSL induced a prominent increase in FABP4 mRNA abundance and in FABP4 immunofluorescence signals in coincubation with AsA. The abundance of NT5E, ENG and THY1 mRNA decreased or tended to decrease in the absence of FBS, and ENG was additionally suppressed by AsA. DAPI fluorescence was higher in cells cultured in poly-L-lysine or gelatin-A coated wells. In additional experiments, the multi-lineage differentiation potential to osteoblasts was verified in medium containing ß-glycerophosphate, dexamethasone and 1,25-dihydroxyvitamin D3 using alizarin red staining. In conclusion, bovine ASC are capable of multi-lineage differentiation. Poly-L-lysine or gelatin-A coating, the absence of FBS, and the presence of BSL and AsA favour optimal transdifferentiation into adipocytes. AsA supports transdifferentiation via a unique role in FABP4 induction, but this is not linearly related to the primarily BSL-driven lipid accumulation
Longitudinal Atomic Beam Spin Echo Experiments: A possible way to study Parity Violation in Hydrogen
We discuss the propagation of hydrogen atoms in static electric and magnetic
fields in a longitudinal atomic beam spin echo (lABSE) apparatus. Depending on
the choice of the external fields the atoms may acquire both dynamical and
geometrical quantum mechanical phases. As an example of the former, we show
first in-beam spin rotation measurements on atomic hydrogen, which are in
excellent agreement with theory. Additional calculations of the behaviour of
the metastable 2S states of hydrogen reveal that the geometrical phases may
exhibit the signature of parity-(P-)violation. This invites for possible future
lABSE experiments, focusing on P-violating geometrical phases in the lightest
of all atoms.Comment: 6 pages, 4 figure
Effect of temperature on aging and time-temperature superposition in nonergodic Laponite suspensions
We have studied the effect of temperature on aging dynamics of laponite
suspensions by carrying out the rheological oscillatory and creep experiments.
We observed that at higher temperatures the mechanism responsible for aging
became faster thereby shifting the evolution of elastic modulus to lower ages.
Significantly, in the creep experiments, all the aging time and the temperature
dependent strain data superposed to form a master curve. Possibility of such
superposition suggests that the rheological behavior depends on the temperature
and the aging time only through the relaxation processes and both the variables
do not affect the distribution but only the average value of relaxation times.
In addition, this procedure allows us to predict long time rheological behavior
by carrying out short time tests at high temperatures and small ages.Comment: 18 pages, 5 figure
Universal Robotic Gripper based on the Jamming of Granular Material
Gripping and holding of objects are key tasks for robotic manipulators. The
development of universal grippers able to pick up unfamiliar objects of widely
varying shape and surface properties remains, however, challenging. Most
current designs are based on the multi-fingered hand, but this approach
introduces hardware and software complexities. These include large numbers of
controllable joints, the need for force sensing if objects are to be handled
securely without crushing them, and the computational overhead to decide how
much stress each finger should apply and where. Here we demonstrate a
completely different approach to a universal gripper. Individual fingers are
replaced by a single mass of granular material that, when pressed onto a target
object, flows around it and conforms to its shape. Upon application of a vacuum
the granular material contracts and hardens quickly to pinch and hold the
object without requiring sensory feedback. We find that volume changes of less
than 0.5% suffice to grip objects reliably and hold them with forces exceeding
many times their weight. We show that the operating principle is the ability of
granular materials to transition between an unjammed, deformable state and a
jammed state with solid-like rigidity. We delineate three separate mechanisms,
friction, suction and interlocking, that contribute to the gripping force.
Using a simple model we relate each of them to the mechanical strength of the
jammed state. This opens up new possibilities for the design of simple, yet
highly adaptive systems that excel at fast gripping of complex objects.Comment: 10 pages, 7 figure
Impact of volume transition on the net charge of poly--isopropyl acrylamide microgels
We explore the electrostatic properties of poly-N-isopropyl acrylamide microgels in dilute, quasi-de-ionized dispersions and show that the apparent net charge of these thermosensitive microgels is an increasing function of their size, the size being conveniently varied by temperature. Our experimental results obtained in a combination of light scattering, conductivity, and mobility experiments are consistent with those obtained in Poisson-Boltzmann cell model calculations, effectively indicating that upon shrinking the number of counterions entrapped within the microgels increases. Remarkably, this behavior shows that the electrostatic energy per particle remains constant upon swelling or deswelling the microgel, resulting in a square root dependence of the net charge on the particle radius
Glasslike Arrest in Spinodal Decomposition as a Route to Colloidal Gelation
Colloid-polymer mixtures can undergo spinodal decomposition into colloid-rich
and colloid-poor regions. Gelation results when interconnected colloid-rich
regions solidify. We show that this occurs when these regions undergo a glass
transition, leading to dynamic arrest of the spinodal decomposition. The
characteristic length scale of the gel decreases with increasing quench depth,
and the nonergodicity parameter exhibits a pronounced dependence on scattering
vector. Mode coupling theory gives a good description of the dynamics, provided
we use the full static structure as input.Comment: 14 pages, 4 figures; replaced with published versio
Studies on the clinical significance of nonesterified and total cholesterol in urine
Gas-liquid chromatographic determinations of nonesterified and total urinary cholesterol were performed in 137 normals, 264 patients with various internal diseases without evidence of neoplasias or diseases of the kidney or urinary tract, 497 patients with malignancies and 236 patients with diseases of the kidney, urinary tract infections or prostatic adenoma with residual urine. A normal range (mean±2 SD) of 0.2–2.2 mg/24 hours nonesterified cholesterol (NEC) and of 0.3–3.0 mg/24 hours total cholesterol (TC) was calculated.
Values of urinary cholesterol excretion were independent of age and sex and did not correlate with cholesterol levels in plasma. Patients with various internal diseases, without evidence of neoplasias nor diseases of the kidney or obstruction of the urinary tract, showed normal urinary cholesterol excretions, as did patients with infections of the urinary tract.
However, elevated urinary cholesterol was found in patients with diseases of the kidney or urinary tract obstruction (prostatic adenoma with residual urine), malignant diseases of the urogenital tract and metastasing carcinoma of the breast. In patients with other malignant diseases urinary cholesterol was usually normal.
Lesions of the urothelial cell membranes are considered to be the most likely cause of urinary cholesterol hyperexcretion. The clinical value of urinary cholesterol determinations as a possible screening test for urogenital carcinomas in unselected populations is limited by lacking specificity, expensive methodology and low prevalence of the mentioned carcinomas, although elevated urinary cholesterol excretions have been observed in early clinical stages of urogenital cancers
Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam
We report on experimental measurements of the flow behavior of a wet,
two-dimensional foam under conditions of slow, steady shear. The initial
response of the foam is elastic. Above the yield strain, the foam begins to
flow. The flow consists of irregular intervals of elastic stretch followed by
sudden reductions of the stress, i.e. stress drops. We report on the
distribution of the stress drops as a function of the applied shear rate. We
also comment on our results in the context of various two-dimensional models of
foams
Influence of acetaminophen and ibuprofen on in vivo patellar tendon adaptations to knee extensor resistance exercise in older adults
Millions of older individuals consume acetaminophen or ibuprofen daily and these same individuals are encouraged to participate in resistance training. Several in vitro studies suggest that cyclooxygenase-inhibiting drugs can alter tendon metabolism and may influence adaptations to resistance training. Thirty-six individuals were randomly assigned to a placebo (67 ± 2 yr old), acetaminophen (64 ± 1 yr old; 4,000 mg/day), or ibuprofen (64 ± 1 yr old; 1,200 mg/day) group in a double-blind manner and completed 12 wk of knee extensor resistance training. Before and after training in vivo patellar tendon properties were assessed with MRI [cross-sectional area (CSA) and signal intensity] and ultrasonography of patellar tendon deformation coupled with force measurements to obtain stiffness, modulus, stress, and strain. Mean patellar tendon CSA was unchanged (P > 0.05) with training in the placebo group, and this response was not influenced with ibuprofen consumption. Mean tendon CSA increased with training in the acetaminophen group (3%, P < 0.05), primarily due to increases in the mid (7%, P < 0.05) and distal (8%, P < 0.05) tendon regions. Correspondingly, tendon signal intensity increased with training in the acetaminophen group at the mid (13%, P < 0.05) and distal (15%, P = 0.07) regions. When normalized to pretraining force levels, patellar tendon deformation and strain decreased 11% (P < 0.05) and stiffness, modulus, and stress were unchanged (P > 0.05) with training in the placebo group. These responses were generally uninfluenced by ibuprofen consumption. In the acetaminophen group, tendon deformation and strain increased 20% (P < 0.05) and stiffness (−17%, P < 0.05) and modulus (−20%, P < 0.05) decreased with training. These data suggest that 3 mo of knee extensor resistance training in older adults induces modest changes in the mechanical properties of the patellar tendon. Over-the-counter doses of acetaminophen, but not ibuprofen, have a strong influence on tendon mechanical and material property adaptations to resistance training. These findings add to a growing body of evidence that acetaminophen has profound effects on peripheral tissues in humans
- …
