54 research outputs found
Efficacy of an Educational Material on Second Primary Cancer Screening Practice for Cancer Survivors: A Randomized Controlled Trial
<div><h3>Background</h3><p>Cancer surivors have limited knowledge about second primary cancer (SPC) screening and suboptimal rates of completion of screening practices for SPC. Our objective was to test the efficacy of an educational material on the knowledge, attitudes, and screening practices for SPC among cancer survivors.</p> <h3>Methods</h3><p>Randomized, controlled trial among 326 cancer survivors from 6 oncology care outpatient clinics in Korea. Patients were randomized to an intervention or an attention control group. The intervention was a photo-novel, culturally tailored to increase knowledge about SPC screening. Knowledge and attitudes regarding SPC screening were assessed two weeks after the intervention, and screening practices were assessed after one year.</p> <h3>Results</h3><p>At two weeks post-intervention, the average knowledge score was significantly higher in the intervention compared to the control group (0.81 vs. 0.75, P<0.01), with no significant difference in their attitude scores (2.64 vs. 2.57, P = 0.18). After 1 year of follow-up, the completion rate of all appropriate cancer screening was 47.2% in both intervention and control groups.</p> <h3>Conclusion</h3><p>While the educatinal material was effective for increasing knowledge of SPC screening, it did not promote cancer screening practice among cancer survivors. More effective interventions are needed to increase SPC screening rates in this population.</p> <h3>Trial Registration</h3><p>ClinicalTrial.gov <a href="http://clinicaltrials.gov/ct2/show/NCT00948337">NCT00948337</a></p> </div
Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome
The presence of spliceosomal introns in eukaryotes raises a range of questions about genomic evolution. Along with the fundamental mysteries of introns' initial proliferation and persistence, the evolutionary forces acting on intron sequences remain largely mysterious. Intron number varies across species from a few introns per genome to several introns per gene, and the elements of intron sequences directly implicated in splicing vary from degenerate to strict consensus motifs. We report a 50-species comparative genomic study of intron sequences across most eukaryotic groups. We find two broad and striking patterns. First, we find that some highly intron-poor lineages have undergone evolutionary convergence to strong 3′ consensus intron structures. This finding holds for both branch point sequence and distance between the branch point and the 3′ splice site. Interestingly, this difference appears to exist within the genomes of green alga of the genus Ostreococcus, which exhibit highly constrained intron sequences through most of the intron-poor genome, but not in one much more intron-dense genomic region. Second, we find evidence that ancestral genomes contained highly variable branch point sequences, similar to more complex modern intron-rich eukaryotic lineages. In addition, ancestral structures are likely to have included polyT tails similar to those in metazoans and plants, which we found in a variety of protist lineages. Intriguingly, intron structure evolution appears to be quite different across lineages experiencing different types of genome reduction: whereas lineages with very few introns tend towards highly regular intronic sequences, lineages with very short introns tend towards highly degenerate sequences. Together, these results attest to the complex nature of ancestral eukaryotic splicing, the qualitatively different evolutionary forces acting on intron structures across modern lineages, and the impressive evolutionary malleability of eukaryotic gene structures
Neoadjuvant in situ gene-mediated cytotoxic immunotherapy improves postoperative outcomes in novel syngeneic esophageal carcinoma models
Esophageal carcinoma is the most rapidly increasing tumor in the United States and has a dismal 15% 5-year survival. Immunotherapy has been proposed to improve patient outcomes; however, no immunocompetent esophageal carcinoma model exists to date to test this approach. We developed two mouse models of esophageal cancer by inoculating immunocompetent mice with syngeneic esophageal cell lines transformed by cyclin-D1 or mutant HRASG12V and loss of p53. Similar to humans, surgery and adjuvant chemotherapy (cisplatin and 5-fluorouracil) demonstrated limited efficacy. Gene-mediated cyototoxic immunotherapy (adenoviral vector carrying the herpes simplex virus thymidine kinase gene in combination with the prodrug ganciclovir; AdV-tk/GCV) demonstrated high levels of in vitro transduction and efficacy. Using in vivo syngeneic esophageal carcinoma models, combining surgery, chemotherapy and AdV-tk/GCV improved survival (P=0.007) and decreased disease recurrence (P<0.001). Mechanistic studies suggested that AdV-tk/GCV mediated a direct cytotoxic effect and an increased intra-tumoral trafficking of CD8 T cells (8.15% vs 14.89%, P=0.02). These data provide the first preclinical evidence that augmenting standard of care with immunotherapy may improve outcomes in the management of esophageal carcinoma
De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications
Progress in gene therapy for neurological disorders
Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy
Spatial differences in East Scotia Ridge hydrothermal vent food webs: influences of chemistry, microbiology and predation on trophodynamics
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites
Transesophageal Echocardiographic Diagnosis of a Congenital Circumflex Coronary Artery to Coronary Sinus Fistula in an Adult
Development of Intelligent and Predictive Self-Healing Composite Structures Using Dynamic Data-Driven Applications Systems
Keratin 23 promotes telomerase reverse transcriptase expression and human colorectal cancer growth
- …
