1,323 research outputs found
Method for electrohydrodynamically assembling patterned colloidal structures
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure
Colorimetric detection of both total genomic and loci-specific DNA methylation from limited DNA inputs
Background: Aberrant DNA methylation marks are potential disease biomarkers, and detecting both total genomic and gene-specific DNA methylation can aid in clinical decisions. While a plethora of methods exist in research, simpler, more convenient alternatives are needed to enhance both routine diagnostics and research. Results: Herein, we describe colorimetric assays using methyl-binding domain (MBD) proteins for rapid and convenient evaluation of total genomic and gene-specific methylation from 50\ua0ng or less DNA input in under 2\ua0h. As little as 5\ua0% methylation differences can be detected and are enhanced by a novel MBD protocol for improved specificity. Our assays could differentiate naïve from de-methylating drug-treated cells and detect the presence of a methylated prostate cancer biomarker in the urine. Finally, the assay was evolved onto disposable screen-printed electrodes for convenient detection of gene-specific methylation in urine. Conclusions: Rapid MBD-based colorimetric and electrochemical approaches to detect DNA methylation from limited samples were successfully demonstrated and applied to clinical samples. We envision that the ease, low sample requirements and speed of these assays could have both clinical and research-wide applications
Apparatus for electrohydrodynamically assembling patterned colloidal structures
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure
Use of tunable nanopore blockade rates to investigate colloidal dispersions
Tunable nanopores in elastomeric membranes have been used to study the
dependence of ionic current blockade rate on the concentration and
electrophoretic mobility of particles in aqueous suspensions. A range of
nanoparticle sizes, materials and surface functionalities has been tested.
Using pressure-driven flow through a pore, the blockade rate for 100 nm
carboxylated polystyrene particles was found to be linearly proportional to
both transmembrane pressure (controlled between 0 and 1.8 kPa) and particle
concentration (between 7 x 10^8 and 4.5 x 10^10 mL^-1). This result can be
accurately modelled using Nernst-Planck transport theory. Using only an applied
potential across a pore, the blockade rates for carboxylic acid and amine
coated 500 nm and 200 nm silica particles were found to correspond to changes
in their mobility as a function of the solution pH. Scanning electron
microscopy and confocal microscopy have been used to visualise changes in the
tunable nanopore geometry in three dimensions as a function of applied
mechanical strain. The pores observed were conical in shape, and changes in
pore size were consistent with ionic current measurements. A zone of inelastic
deformation adjacent to the pore has been identified as critical in the tuning
process
Equations for filling factor estimation in opal matrix
We consider two equations for the filling factor estimation of infiltrated
zinc oxide (ZnO) in silica (SiO_2) opal and gallium nitride in ZnO opal. The
first equation is based on the effective medium approximation, while the second
one - on Maxwell-Garnett approximation. The comparison between two filling
factors shows that both equations can be equally used for the estimation of the
quantity of infiltrated nanocrystals inside opal matrix.Comment: 14 pages, 7 figures, 1 table. Addendum to the article:
http://arxiv.org/abs/physics/050815
A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles
We demonstrate an optically induced electrokinetic technique that continuously concentrates nanoparticles on the surface of a parallel plate electrode that is biased with an AC signal. A highly focused beam of near-infrared light (1064 nm) was applied, inducing an electrothermal microfluidic vortex that carried nanoparticles to its center where they were accumulated. This technique was demonstrated with 49 nm and 100 nm fluorescent polystyrene particles and characterized as a function of applied AC frequency and voltage. With this technique the location and shape of colloidal concentration was reconfigured by controlling the optical landscape, yielding dynamic control of the aggregation. Colloidal concentration was demonstrated with a plain parallel plate electrode configuration without the need of photoconductive materials or complex microfabrication procedures
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing
Exosomes show promise as non-invasive biomarkers for cancers, but their effective capture and specific detection is a significant challenge. Herein, we report a multiplexed microfluidic device for highly specific capture and detection of multiple exosome targets using a tuneable alternating current electrohydrodynamic (ac-EHD) methodology - referred to as nanoshearing. In our system, electrical body forces generated by ac-EHD act within nanometers of an electrode surface (i.e., within the electrical layer) to generate nanoscaled fluid flow which enhances the specificity of capture and also reduce nonspecific adsorption of weakly bound molecules from the electrode surface. This approach demonstrates the analysis of exosomes derived from cells expressing human epidermal growth factor receptor 2 (HER2) and prostate specific antigen (PSA), and exhibits a 5-fold detection enhancement compared to hydrodynamic flow based assays. The device was also sensitive enough to detect approximately 2750 exosomes/µL (n = 3) and also capable of specifically isolating exosomes from breast cancer patient samples. We believe this approach can potentially find its relevance as a simple and rapid quantification tool to analyze exosome targets in biological applications
Universality for 2D Wedge Wetting
We study 2D wedge wetting using a continuum interfacial Hamiltonian model
which is solved by transfer-matrix methods. For arbitrary binding potentials,
we are able to exactly calculate the wedge free-energy and interface height
distribution function and, thus, can completely classify all types of critical
behaviour. We show that critical filling is characterized by strongly universal
fluctuation dominated critical exponents, whilst complete filling is determined
by the geometry rather than fluctuation effects. Related phenomena for
interface depinning from defect lines in the bulk are also considered.Comment: 4 pages, 1 figur
- …
