21,149 research outputs found

    Quantum Accelerators for High-Performance Computing Systems

    Full text link
    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.Comment: "If you want to go quickly, go alone. If you want to go far, go together.

    Experimental demonstration of stimulated polarization wave in a chain of nuclear spins

    Full text link
    A stimulated wave of polarization, which implements a simple mechanism of quantum amplification, is experimentally demonstrated in a chain of four J-coupled nuclear spins, irradiated by a weak radio-frequency transverse field. The "quantum domino" dynamics, a wave of flipped spins triggered by a flip of the first spin, has been observed in fully 13^{13}C-labeled sodium butyrate.Comment: 8 pages including 3 figure

    Unravelling an Extra Neutral Gauge Boson at the LHC using Third Generation Fermions

    Full text link
    We study the potential to use measurements of extra neutral gauge bosons (Z') properties in pp collisions at the Large Hadron Collider to unravel the underlying physics. We focus on the usefulness of third generation final states (tau, b, t) in distinguishing between models with non-universal Z'-fermion couplings. We present an update of discovery limits of Z's including the 2010-2011 LHC run and include models with non-universal couplings. We show how ratios of sigma(pp -> Z' -> ttbar), sigma(pp -> Z' -> bbbar), and sigma(pp -> Z' -> tau^+tau^-) to sigma(pp -> Z' -> mu^+mu^-) can be used to distinguish between models and measure parameters of the models. Of specific interest are models with preferential couplings, such as models with generation dependent couplings. We also find that forward-backward asymmetry measurements with third generation fermions in the final state could provide important input to understanding the nature of the Z'. Understanding detector resolution and efficiencies will be crucial for extracting results

    Construction Dust Amelioration Techniques

    Get PDF
    INE/AUTC 12.0

    Electroweakino constraints from LHC data

    Get PDF
    We investigate the sensitivity of existing LHC searches to the charginos and neutralinos of the MSSM when all the other superpartners are decoupled. In this limit, the underlying parameter space reduces to a simple four-dimensional set {M1,M2,μ,tanβ}\{M_1,\,M_2,\,\mu,\,\tan\beta\}. We examine the constraints placed on this parameter space by a broad range of LHC searches taking into account the full set of relevant production and decay channels. We find that the exclusions implied by these searches exceed existing limits from LEP only for smaller values of the Bino mass M1150M_1 \lesssim 150 GeV. Our results have implications for MSSM dark matter and electroweak baryogenesis.Comment: 30 pages, 15 figure
    corecore