116 research outputs found

    Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013-14

    Get PDF
    Eruptions of Sinabung volcano, Indonesia have been ongoing since 2013. Since that time, the character of eruptions has changed, from phreatic to phreatomagmatic to magmatic explosive eruptions, and from production of a lava dome that collapsed to a subsequent thick lava flow that slowly ceased to be active, and later, to a new lava dome. As the eruption progressed, event trees were constructed to forecast eruptive behavior six times, with forecast windows that ranged from 2. weeks to 1. year: November 7-10, December 12-14, and December 27, 2013; and January 9-10, May 13, and October 7, 2014. These event trees were successful in helping to frame the forecast scenarios, to collate current monitoring information, and to document outstanding questions and unknowns. The highest probability forecasts closely matched outcomes of eruption size (including extrusion of the first dome), production of pyroclastic density currents, and pyroclastic density current runout distances. Events assigned low probabilities also occurred, including total collapse of the lava dome in January 2014 and production of a small blast pyroclastic density current in February 2014

    The Impact of “Omic” and Imaging Technologies on Assessing the Host Immune Response to Biodefence Agents

    Get PDF
    Understanding the interactions between host and pathogen is important for the development and assessment of medical countermeasures to infectious agents, including potential biodefence pathogens such as Bacillus anthracis, Ebola virus, and Francisella tularensis. This review focuses on technological advances which allow this interaction to be studied in much greater detail. Namely, the use of “omic” technologies (next generation sequencing, DNA, and protein microarrays) for dissecting the underlying host response to infection at the molecular level; optical imaging techniques (flow cytometry and fluorescence microscopy) for assessing cellular responses to infection; and biophotonic imaging for visualising the infectious disease process. All of these technologies hold great promise for important breakthroughs in the rational development of vaccines and therapeutics for biodefence agents

    Weekly ultra-hypofractionated radiotherapy in localised prostate cancer

    Get PDF
    Background: Moderately hypofractionated radiotherapy regimens or stereotactic body radiotherapy (SBRT) are standard of care for localised prostate cancer. However, some patients are unable or unwilling to travel daily to the radiotherapy department and do not have access to, or are not candidates for, SBRT. For many years, The Royal Marsden Hospital NHS Foundation Trust has offered a weekly ultra-hypofractionated radiotherapy regimen to the prostate (36 Gy in 6 weekly fractions) to patients unable/unwilling to travel daily. Methods: The current study is a retrospective analysis of all patients with non-metastatic localised prostate cancer receiving this treatment schedule from 2010 to 2015. Results: A total of 140 patients were included in the analysis, of whom 86 % presented with high risk disease, with 31 % having Gleason Grade Group 4 or 5 disease and 48 % T3 disease or higher. All patients received hormone treatment, and there was often a long interval between start of hormone treatment and start of radiotherapy (median of 11 months), with 34 % of all patients having progressed to non-metastatic castrate-resistant disease prior to start of radiotherapy. Median follow-up was 52 months. Median progression-free survival (PFS) and overall survival (OS) for the whole group was 70 months and 72 months, respectively. PFS and OS in patients with hormone-sensitive disease at time of radiotherapy was not reached and 75 months, respectively; and in patients with castrate-resistant disease at time of radiotherapy it was 20 months and 61 months, respectively. Conclusion: Our data shows that a weekly ultra-hypofractionated radiotherapy regimen for prostate cancer could be an option in those patients for whom daily treatment or SBRT is not an option

    SARS-CoV-2 infection enhancement by amphotericin B:implications for disease management

    Get PDF
    Severe coronavirus disease 2019 (COVID-19) patients who require hospitalization are at high risk of invasive pulmonary mucormycosis. Amphotericin B (AmB), which is the first-line therapy for invasive pulmonary mucormycosis, has been shown to promote or inhibit replication of a spectrum of viruses. In this study, we first predicted that AmB and nystatin had strong interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins using in silico screening, indicative of drugs with potential therapeutic activity against this virus. Subsequently, we investigated the impact of AmB, nystatin, natamycin, fluconazole, and caspofungin on SARS-CoV-2 infection and replication in vitro. Results showed that AmB and nystatin actually increased SARS-CoV-2 replication in Vero E6, Calu-3, and Huh7 cells. At optimal concentrations, AmB and nystatin increase SARS-CoV-2 replication by up to 100- and 10-fold in Vero E6 and Calu-3 cells, respectively. The other antifungals tested had no impact on SARS-CoV-2 infection in vitro. Drug kinetic studies indicate that AmB enhances SARS-CoV-2 infection by promoting viral entry into cells. Additionally, knockdown of genes encoding for interferon-induced transmembrane (IFITM) proteins 1, 2, and 3 suggests AmB enhances SARS-CoV-2 cell entry by overcoming the antiviral effect of the IFITM3 protein. This study further elucidates the role of IFITM3 in viral entry and highlights the potential dangers of treating COVID-19 patients, with invasive pulmonary mucormycosis, using AmB

    Linked Mutations in the Ebola Virus Polymerase Are Associated with Organ Specific Phenotypes

    Get PDF
    Ebola virus (EBOV) causes a severe infection called Ebola virus disease (EVD). The pathogenesis of EBOV infection is complex, and outcome has been associated with a variety of immunological and cellular factors. Disease can result from several mechanisms, including direct organ and endothelial cell damage as a result of viral replication. During the2013 to 2016 Western Africa EBOV outbreak, several mutants emerged, with changes in the genes of nucleoprotein (NP), glycoprotein (GP), and the large (L) protein. Reverse genetic analysis has been used to investigate whether these mutations played any role in pathogenesis with mixed results depending on the experimental system used. Previous studies investigated the impact of three single nonsynonymous mutations (GP-A82V, NP-R111C, and L-D759G) on the fatality rate of mouse and ferret models and suggested that the L-D759G mutation decreased the virulence of EBOV. In this study, the effect of these three mutations was further evaluated by deep sequencing to determine viral population genetics and the host response in longitudinal samples of blood, liver, kidney, spleen, and lung tissues taken from the previous ferret model. The data indicated that the mutations were maintained in the different tissues, but the frequency of minor genomic mutations were different. In addition, compared to wild-type virus, the recombinant mutants had different within host effects, where the D759G (and accompanying Q986H) substitution in the L protein resulted in an upregulation of the immune response in the kidney, liver, spleen, and lungs. Together these studies provide insights into the biology of EBOV mutants both between and within hosts. IMPORTANCE Ebola virus infection can have dramatic effects on the human body which manifest in Ebola virus disease. The outcome of infection is either survival or death and in the former group with the potential of longer-term health consequences and persistent infection. Disease severity is undoubtedly associated with the host response, often with overt inflammatory responses correlated with poorer outcomes. The scale of the2013 to 2016 Western African Ebola virus outbreak revealed new aspects of viral biology. This included the emergence of mutants with potentially altered virulence. Biobanked tissue from ferret models of EBOV infected with different mutants that emerged in the Western Africa outbreak was used to investigate the effect of EBOV genomic variation in different tissues. Overall, the work provided insights into the population genetics of EBOV and showed that different organs in an animal model can respond differently to variants of EBOV

    Structures and therapeutic potential of anti-RBD human monoclonal antibodies against SARS-CoV-2

    Get PDF
    Background: Administration of potent anti-receptor-binding domain (RBD) monoclonal antibodies has been shown to curtail viral shedding and reduce hospitalization in patients with SARS-CoV-2 infection. However, the structure-function analysis of potent human anti-RBD monoclonal antibodies and its links to the formulation of antibody cocktails remains largely elusive. Methods: Previously, we isolated a panel of neutralizing anti-RBD monoclonal antibodies from convalescent patients and showed their neutralization efficacy in vitro. Here, we elucidate the mechanism of action of antibodies and dissect antibodies at the epitope level, which leads to a formation of a potent antibody cocktail. Results: We found that representative antibodies which target non-overlapping epitopes are effective against wild type virus and recently emerging variants of concern, whilst being encoded by antibody genes with few somatic mutations. Neutralization is associated with the inhibition of binding of viral RBD to ACE2 and possibly of the subsequent fusion process. Structural analysis of representative antibodies, by cryo-electron microscopy and crystallography, reveals that they have some unique aspects that are of potential value while sharing some features in common with previously reported neutralizing monoclonal antibodies. For instance, one has a common VH 3-53 public variable region yet is unusually resilient to mutation at residue 501 of the RBD. We evaluate the in vivo efficacy of an antibody cocktail consisting of two potent non-competing anti-RBD antibodies in a Syrian hamster model. We demonstrate that the cocktail prevents weight loss, reduces lung viral load and attenuates pulmonary inflammation in hamsters in both prophylactic and therapeutic settings. Although neutralization of one of these antibodies is abrogated by the mutations of variant B.1.351, it is also possible to produce a bi-valent cocktail of antibodies both of which are resilient to variants B.1.1.7, B.1.351 and B.1.617.2. Conclusions: These findings support the up-to-date and rational design of an anti-RBD antibody cocktail as a therapeutic candidate against COVID-19.Temple University. College of Science and TechnologyBiolog

    The P323L Substitution in the SARS-CoV-2 Polymerase (NSP12) Confers a Selective Advantage During Infection

    Get PDF
    BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

    Get PDF
    Background: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. Results: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. Conclusions: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions
    corecore