73 research outputs found

    Safety and effectiveness of SOFIA/SOFIA PLUS for direct aspiration as first line treatment in patients with acute anterior ischemic stroke:results from the prospective, multicentric SESAME study

    Get PDF
    BACKGROUND: Mechanical thrombectomy is a cornerstone treatment for acute ischemic stroke (AIS) with large vessel occlusion (LVO), yet the optimal technique remains debated. The SOFIA/SOFIA PLUS catheter has emerged as a promising tool for direct aspiration thrombectomy.PURPOSE: This prospective multi-center study, adhering Good-Clinical-Practice guidelines, aimed to evaluate the safety and efficacy of the SOFIA/SOFIA PLUS catheter for direct aspiration as a first-line treatment technique in patients with acute anterior circulation LVO.MATERIALS AND METHODS: Between 10/2017 and 12/2021, 246 consecutive patients presenting with AIS due to anterior circulation LVO were enrolled from 14 European centers. Primary treatment with SOFIA catheters was performed within 6 h of symptom onset. Clinical and radiological data were collected, and statistical analyses were conducted.RESULTS: The mean age of the included patients was 71.6 ± 13.9 years, with 44.7% being male. Primary aspiration achieved complete recanalization in 72.8% of patients, with functional independence observed in 63.8% after 90 days. Secondary outcomes included a median NIHSS of 4 at 24 h post-procedure, median ASPECTS of 7 on follow-up imaging, and a mortality rate of 24.4% at 90 days. No device malfunctions were observed, and the rate of symptomatic intracranial hemorrhage was 4.4%.CONCLUSION: Primary aspiration with the SOFIA/SOFIA PLUS catheter demonstrates favorable safety and efficacy profiles in the treatment of anterior circulation LVO. These findings support the utilization of this technique as a first-line approach in mechanical thrombectomy for AIS, contributing to the growing body of evidence endorsing the effectiveness of direct aspiration thrombectomy in stroke management.</p

    Evaluation of the Temporal Muscle Thickness as an Independent Prognostic Biomarker in Patients with Primary Central Nervous System Lymphoma.

    Get PDF
    In this study, we assessed the prognostic relevance of temporal muscle thickness (TMT), likely reflecting patient's frailty, in patients with primary central nervous system lymphoma (PCNSL). In 128 newly diagnosed PCNSL patients TMT was analyzed on cranial magnetic resonance images. Predefined sex-specific TMT cutoff values were used to categorize the patient cohort. Survival analyses, using a log-rank test as well as Cox models adjusted for further prognostic parameters, were performed. The risk of death was significantly increased for PCNSL patients with reduced muscle thickness (hazard ratio of 3.189, 95% CI: 2-097-4.848, p < 0.001). Importantly, the results confirmed that TMT could be used as an independent prognostic marker upon multivariate Cox modeling (hazard ratio of 2.504, 95% CI: 1.608-3.911, p < 0.001) adjusting for sex, age at time of diagnosis, deep brain involvement of the PCNSL lesions, Eastern Cooperative Oncology Group (ECOG) performance status, and methotrexate-based chemotherapy. A TMT value below the sex-related cutoff value at the time of diagnosis is an independent adverse marker in patients with PCNSL. Thus, our results suggest the systematic inclusion of TMT in further translational and clinical studies designed to help validate its role as a prognostic biomarker

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing

    Federated learning enables big data for rare cancer boundary detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.</p

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Zerebrale onkotische Aneurysmen bei Vorhofmyxom mit neurologischen Spätkomplikationen

    Full text link
    corecore