1,449 research outputs found

    Modeling Human Visual Search Performance on Realistic Webpages Using Analytical and Deep Learning Methods

    Full text link
    Modeling visual search not only offers an opportunity to predict the usability of an interface before actually testing it on real users, but also advances scientific understanding about human behavior. In this work, we first conduct a set of analyses on a large-scale dataset of visual search tasks on realistic webpages. We then present a deep neural network that learns to predict the scannability of webpage content, i.e., how easy it is for a user to find a specific target. Our model leverages both heuristic-based features such as target size and unstructured features such as raw image pixels. This approach allows us to model complex interactions that might be involved in a realistic visual search task, which can not be easily achieved by traditional analytical models. We analyze the model behavior to offer our insights into how the salience map learned by the model aligns with human intuition and how the learned semantic representation of each target type relates to its visual search performance.Comment: the 2020 CHI Conference on Human Factors in Computing System

    The blinking spotlight of attention

    Get PDF
    Increasing evidence suggests that attention can concurrently select multiple locations; yet it is not clear whether this ability relies on continuous allocation of attention to the different targets (a "parallel" strategy) or whether attention switches rapidly between the targets (a periodic "sampling" strategy). Here, we propose a method to distinguish between these two alternatives. The human psychometric function for detection of a single target as a function of its duration can be used to predict the corresponding function for two or more attended targets. Importantly, the predicted curves differ, depending on whether a parallel or sampling strategy is assumed. For a challenging detection task, we found that human performance was best reflected by a sampling model, indicating that multiple items of interest were processed in series at a rate of approximately seven items per second. Surprisingly, the data suggested that attention operated in this periodic regime, even when it was focused on a single target. That is, attention might rely on an intrinsically periodic process

    Attention to the Color of a Moving Stimulus Modulates Motion-Signal Processing in Macaque Area MT: Evidence for a Unified Attentional System

    Get PDF
    Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tuning properties of the recorded neuron and the perceptual task at hand. We recorded extracellular responses from individual direction-selective neurons in the middle temporal area (MT) of rhesus monkeys trained to attend either to the color or the motion signal of a moving stimulus. We found that effects of spatial and feature-based attention in MT, which are typically observed in tasks allocating attention to motion, were very similar even when attention was directed to the color of the stimulus. We conclude that attentional modulation can occur in extrastriate cortex, even under conditions without a match between the tuning properties of the recorded neuron and the perceptual task at hand. Our data are consistent with theories of object-based attention describing a transfer of attention from relevant to irrelevant features, within the attended object and across the visual field. These results argue for a unified attentional system that modulates responses to a stimulus across cortical areas, even if a given area is specialized for processing task-irrelevant aspects of that stimulus

    Community-based natural resource management

    Get PDF

    Stochastic accumulation of feature information in perception and memory

    Get PDF
    It is now well established that the time course of perceptual processing influences the first second or so of performance in a wide variety of cognitive tasks. Over the last20 years, there has been a shift from modeling the speed at which a display is processed, to modeling the speed at which different features of the display are perceived and formalizing how this perceptual information is used in decision making. The first of these models(Lamberts, 1995) was implemented to fit the time course of performance in a speeded perceptual categorization task and assumed a simple stochastic accumulation of feature information. Subsequently, similar approaches have been used to model performance in a range of cognitive tasks including identification, absolute identification, perceptual matching, recognition, visual search, and word processing, again assuming a simple stochastic accumulation of feature information from both the stimulus and representations held in memory. These models are typically fit to data from signal-to-respond experiments whereby the effects of stimulus exposure duration on performance are examined, but response times (RTs) and RT distributions have also been modeled. In this article, we review this approach and explore the insights it has provided about the interplay between perceptual processing, memory retrieval, and decision making in a variety of tasks. In so doing, we highlight how such approaches can continue to usefully contribute to our understanding of cognition
    corecore