720 research outputs found

    Validity of the new lifestyles NL-1000 accelerometer for measuring time spent in moderate-to-vigorous physical activity in school settings

    Get PDF
    Current interest in promoting physical activity in the school environment necessitates an inexpensive, accurate method of measuring physical activity in such settings. Additionally, it is recognized that physical activity must be of at least moderate intensity in order to yield substantial health benefits. The purpose of the study, therefore, was to determine the validity of the New Lifestyles NL-1000 (New Lifestyles, Inc., Lee's Summit, Missouri, USA) accelerometer for measuring moderate-to-vigorous physical activity in school settings, using the Actigraph GT1M (ActiGraph, Pensacola, Florida, USA) as the criterion. Data were collected during a cross-country run (n = 12), physical education (n = 18), and classroom-based physical activities (n = 42). Significant and meaningful intraclass correlations between methods were found, and NL-1000 estimates of moderate-to-vigorous physical activity were not meaningfully different from GT1M-estimated moderate- to-vigorous physical activity. The NL-1000 therefore shows promising validity evidence as an inexpensive, convenient method of measuring moderate-to-vigorous physical activity in school settings

    Recommendations for exercise adherence measures in musculoskeletal settings : a systematic review and consensus meeting (protocol)

    Get PDF
    Background: Exercise programmes are frequently advocated for the management of musculoskeletal disorders; however, adherence is an important pre-requisite for their success. The assessment of exercise adherence requires the use of relevant and appropriate measures, but guidance for appropriate assessment does not exist. This research will identify and evaluate the quality and acceptability of all measures used to assess exercise adherence within a musculoskeletal setting, seeking to reach consensus for the most relevant and appropriate measures for application in research and/or clinical practice settings. Methods/design: There are two key stages to the proposed research. First, a systematic review of the quality and acceptability of measures used to assess exercise adherence in musculoskeletal disorders; second, a consensus meeting. The systematic review will be conducted in two phases and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a robust methodology. Phase one will identify all measures that have been used to assess exercise adherence in a musculoskeletal setting. Phase two will seek to identify published and unpublished evidence of the measurement and practical properties of identified measures. Study quality will be assessed against the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. A shortlist of best quality measures will be produced for consideration during stage two: a meeting of relevant stakeholders in the United Kingdom during which consensus on the most relevant and appropriate measures of exercise adherence for application in research and/or clinical practice settings will be sought. Discussion: This study will benefit clinicians who seek to evaluate patients’ levels of exercise adherence and those intending to undertake research, service evaluation, or audit relating to exercise adherence in the musculoskeletal field. The findings will impact upon new research studies which aim to understand the factors that predict adherence with exercise and which test different adherence-enhancing interventions. PROSPERO reference: CRD4201300621

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children

    The effect of the UP4FUN pilot intervention on objectively measured sedentary time and physical activity in 10-12 year old children in Belgium: the ENERGY-project

    Get PDF
    <p>Abstract</p> <p>Bakckground</p> <p>The first aim was to examine the effect of the UP4FUN pilot intervention on children’s total sedentary time. The second aim was to investigate if the intervention had an effect on children’s physical activity (PA) level. Finally, we aimed to investigate demographic differences (i.e. age, gender, ethnicity, living status and having siblings) between children in the intervention group who improved in sedentary time and PA at post-test and children in the intervention group who worsened in sedentary time and PA at post-test.</p> <p>Methods</p> <p>The six weeks UP4FUN intervention was tested in a randomized controlled trial with pre-test post-test design with five intervention and five control schools in Belgium and included children of the 5<sup>th</sup> and 6<sup>th</sup> grade. The children wore accelerometers for seven days at pre- and post-test. Analyses included children with valid accelerometer data for at least two weekdays with minimum 10h-wearing time and one weekend day with 8h-wearing time.</p> <p>Result</p> <p>Final analyses included 372 children (60% girls, mean age = 10.9 ± 0.7 years). There were no significant differences in the change in sedentary time or light PA between intervention and control schools for the total sample or for the subgroup analyses by gender. However, children (specifically girls) in the intervention group had a higher decrease in moderate-to-vigorous PA than children in the control group. In the intervention group, children who lived with both parents and children with one or more siblings were less likely to reduce sedentary time after exposure to the intervention. Older children, girls and children who lived with both parents were less likely to increase light PA after the intervention.</p> <p>Conclusion</p> <p>The UP4FUN intervention did not result in an effect on children’s sedentary time. Based on the high amounts of accelerometer-derived sedentary time in this age group, more efforts are needed to develop strategies to reduce children’s sedentary time.</p

    A calibration protocol for population-specific accelerometer cut-points in children

    Get PDF
    PurposeTo test a field-based protocol using intermittent activities representative of children\u27s physical activity behaviours, to generate behaviourally valid, population-specific accelerometer cut-points for sedentary behaviour, moderate, and vigorous physical activity.MethodsTwenty-eight children (46% boys) aged 10&ndash;11 years wore a hip-mounted uniaxial GT1M ActiGraph and engaged in 6 activities representative of children\u27s play. A validated direct observation protocol was used as the criterion measure of physical activity. Receiver Operating Characteristics (ROC) curve analyses were conducted with four semi-structured activities to determine the accelerometer cut-points. To examine classification differences, cut-points were cross-validated with free-play and DVD viewing activities.ResultsCut-points of &le;372, &gt;2160 and &gt;4806 counts&bull;min&minus;1 representing sedentary, moderate and vigorous intensity thresholds, respectively, provided the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of the activity). Cross-validation data demonstrated that these values yielded the best overall kappa scores (0.97; 0.71; 0.62), and a high classification agreement (98.6%; 89.0%; 87.2%), respectively. Specificity values of 96&ndash;97% showed that the developed cut-points accurately detected physical activity, and sensitivity values (89&ndash;99%) indicated that minutes of activity were seldom incorrectly classified as inactivity.ConclusionThe development of an inexpensive and replicable field-based protocol to generate behaviourally valid and population-specific accelerometer cut-points may improve the classification of physical activity levels in children, which could enhance subsequent intervention and observational studies.<br /

    Common variants near MC4R in relation to body fat, body fat distribution, metabolic traits and energy expenditure

    Get PDF
    Udgivelsesdato: 2010-JanOBJECTIVE: Common variants near melanocortin receptor 4 (MC4R) have been related to fatness and type 2 diabetes. We examined the associations of rs17782313 and rs17700633 in relation to body fat, body fat distribution, metabolic traits, weight development and energy expenditure. METHODS: Obese young men (n = 753, BMI &gt; or = 31.0 kg m(-2)) and a randomly selected group (n = 874) identified from a population of 174 800 men were re-examined in three surveys at mean ages 35, 46 and 49 years (S-35, S-46 and S-49). Measurements were available at upto eight times from birth to adulthood. Logistic regression analysis was used to assess odds ratio (OR) for the presence of the carrier allele for a given difference in phenotypic values. RESULTS: Rs17782313 minor C-allele was associated with overall, abdominal and peripheral fatness (range of OR = 1.06-1.14 per z-score units) at all three surveys, although only consistently significant at S-35 and S-46. Rs17700633 minor A-allele was also associated with the fatness measures, but significantly so only at S-49 for overall and abdominal fatness (range of OR = 1.03-1.15 per z-score units), and peripheral fatness (OR = 1.15-1.20 per z-score units). There were only few significant associations with metabolic traits. The rs17782313 C-allele and the rs17700633 A-allele were both associated with lower high-density lipoprotein cholesterol (range of OR = 0.64-0.84 per mol l(-1)), significantly at S-46. The rs17700633 A-allele was significantly associated with insulin (OR = 1.25 per 50 pmol l(-1)), leptin (OR = 1.42 per 10 ng microl(-1)) and insulin sensitivity (OR = 0.81 per model unit). The rs17782313 C-allele and the rs17700633 A-allele were both associated with BMI in childhood and adolescence (range of OR = 1.04-1.17 per z-score units), significant for the rs17782313 C-allele at the age of 13-19 years and for rs17700633 A-allele at age 7, 10, 13 and 19 years. No significant associations were found for energy expenditure. CONCLUSION: Near MC4R variants appear to contribute to body fat, body fat distribution, some metabolic traits, weight development during childhood, but not to energy expenditure

    Actigraph Accelerometer-Defined Boundaries for Sedentary Behaviour and Physical Activity Intensities in 7 Year Old Children

    Get PDF
    Background: Accurate objective assessment of sedentary and physical activity behaviours during childhood is integral to the understanding of their relation to later health outcomes, as well as to documenting the frequency and distribution of physical activity within a population.Purpose: To calibrate the Actigraph GT1M accelerometer, using energy expenditure (EE) as the criterion measure, to define thresholds for sedentary behaviour and physical activity categories suitable for use in a large scale epidemiological study in young children.Methods: Accelerometer-based assessments of physical activity (counts per minute) were calibrated against EE measures (kcal.kg(-1).hr(-1)) obtained over a range of exercise intensities using a COSMED K4b(2) portable metabolic unit in 53 seven-year-old children. Children performed seven activities: lying down viewing television, sitting upright playing a computer game, slow walking, brisk walking, jogging, hopscotch and basketball. Threshold count values were established to identify sedentary behaviour and light, moderate and vigorous physical activity using linear discriminant analysis (LDA) and evaluated using receiver operating characteristic (ROC) curve analysis.Results: EE was significantly associated with counts for all non-sedentary activities with the exception of jogging. Threshold values for accelerometer counts (counts. minute(-1)) were = 3841 for light, moderate and vigorous physical activity respectively. The area under the ROC curves for discrimination of sedentary behaviour and vigorous activity were 0.98. Boundaries for light and moderate physical activity were less well defined (0.61 and 0.60 respectively). Sensitivity and specificity were higher for sedentary (99% and 97%) and vigorous (95% and 91%) than for light (60% and 83%) and moderate (61% and 76%) thresholds.Conclusion: The accelerometer cut points established in this study can be used to classify sedentary behaviour and to distinguish between light, moderate and vigorous physical activity in children of this age

    Strength Training for Arthritis Trial (START): design and rationale

    Get PDF
    Background Muscle loss and fat gain contribute to the disability, pain, and morbidity associated with knee osteoarthritis (OA), and thigh muscle weakness is an independent and modifiable risk factor for it. However, while all published treatment guidelines recommend muscle strengthening exercise to combat loss of muscle mass and strength in knee OA patients, previous strength training studies either used intensities or loads below recommended levels for healthy adults or were generally short, lasting only 6 to 24 weeks. The efficacy of high-intensity strength training in improving OA symptoms, slowing progression, and affecting the underlying mechanisms has not been examined due to the unsubstantiated belief that it might exacerbate symptoms. We hypothesize that in addition to short-term clinical benefits, combining greater duration with high-intensity strength training will alter thigh composition sufficiently to attain long-term reductions in knee-joint forces, lower pain levels, decrease inflammatory cytokines, and slow OA progression. Methods/Design This is an assessor-blind, randomized controlled trial. The study population consists of 372 older (age ≥ 55 yrs) ambulatory, community-dwelling persons with: (1) mild-to-moderate medial tibiofemoral OA (Kellgren-Lawrence (KL) = 2 or 3); (2) knee neutral or varus aligned knee ( -2° valgus ≤ angle ≤ 10° varus); (3) 20 kg.m-2 ≥ BMI ≤ 45 kg.m-2; and (3) no participation in a formal strength-training program for more than 30 minutes per week within the past 6 months. Participants are randomized to one of 3 groups: high-intensity strength training (75-90% 1Repetition Maximum (1RM)); low-intensity strength training (30-40%1RM); or healthy living education. The primary clinical aim is to compare the interventions’ effects on knee pain, and the primary mechanistic aim is to compare their effects on knee-joint compressive forces during walking, a mechanism that affects the OA disease pathway. Secondary aims will compare the interventions’ effects on additional clinical measures of disease severity (e.g., function, mobility); disease progression measured by x-ray; thigh muscle and fat volume, measured by computed tomography (CT); components of thigh muscle function, including hip abductor strength and quadriceps strength, and power; additional measures of knee-joint loading; inflammatory and OA biomarkers; and health-related quality of life. Discussion Test-retest reliability for the thigh CT scan was: total thigh volume, intra-class correlation coefficients (ICC) = 0.99; total fat volume, ICC = 0.99, and total muscle volume, ICC = 0.99. ICC for both isokinetic concentric knee flexion and extension strength was 0.93, and for hip-abductor concentric strength was 0.99. The reliability of our 1RM testing was: leg press, ICC = 0.95; leg curl, ICC = 0.99; and leg extension, ICC = 0.98. Results of this trial will provide critically needed guidance for clinicians in a variety of health professions who prescribe and oversee treatment and prevention of OA-related complications. Given the prevalence and impact of OA and the widespread availability of this intervention, assessing the efficacy of optimal strength training has the potential for immediate and vital clinical impact

    The effect of resistance training interventions on weight status in youth:a meta-analysis

    Get PDF
    Abstract Background There has been a rise in research into obesity prevention and treatment programmes in youth, including the effectiveness of resistance-based exercise. The purpose of this meta-analysis was to examine the effect of resistance training interventions on weight status in youth. Methods Meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered on PROSPERO (registration number CRD42016038365). Eligible studies were from English language peer-reviewed published articles. Searches were conducted in seven databases between May 2016 and June 2017. Studies were included that examined the effect of resistance training on weight status in youth, with participants of school age (5–18 years). Results There were 24 complete sets of data from 18 controlled trials (CTs) which explored 8 outcomes related to weight status. Significant, small effect sizes were identified for body fat% (Hedges’ g = 0.215, 95% CI 0.059 to 0.371, P = 0.007) and skinfolds (Hedges’ g = 0.274, 95% CI 0.066 to 0.483, P = 0.01). Effect sizes were not significant for: body mass (Hedges’ g = 0.043, 95% CI − 0.103 to 0.189, P = 0.564), body mass index (Hedges’ g = 0.024, 95% CI − 0.205 to 0.253, P = 0.838), fat-free mass (Hedges’ g = 0.073, 95% CI − 0.169 to 0.316, P = 0.554), fat mass (Hedges’ g = 0.180, 95% CI − 0.090 to 0.451, P = 0.192), lean mass (Hedges’ g = 0.089, 95% CI − 0.122 to 0.301, P = 0.408) or waist circumference (Hedges’ g = 0.209, 95% CI − 0.075 to 0.494, P = 0.149). Conclusions The results of this meta-analysis suggest that an isolated resistance training intervention may have an effect on weight status in youth. Overall, more quality research should be undertaken to investigate the impact of resistance training in youth as it could have a role to play in the treatment and prevention of obesity
    corecore