206 research outputs found
In vivo imaging of extracellular matrix remodeling by tumor-associated fibroblasts.
Here we integrated multiphoton laser scanning microscopy and the registration of second harmonic generation images of collagen fibers to overcome difficulties in tracking stromal cell-matrix interactions for several days in live mice. We show that the matrix-modifying hormone relaxin increased tumor-associated fibroblast (TAF) interaction with collagen fibers by stimulating beta1-integrin activity, which is necessary for fiber remodeling by matrix metalloproteinases
Molecular, Metabolic, and Subcellular Mapping of the Tumor Immune Microenvironment via 3D Targeted and Non-Targeted Multiplex Multi-Omics Analyses
Most platforms used for the molecular reconstruction of the tumor-immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell-cell or cell-extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples. The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel predictive biomarkers and therapeutic targets, which can improve patient survival rates
Molecular, Metabolic, and Subcellular Mapping of the Tumor Immune Microenvironment via 3D Targeted and Non-Targeted Multiplex Multi-Omics Analyses
Most platforms used for the molecular reconstruction of the tumor-immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell-cell or cell-extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples. The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel predictive biomarkers and therapeutic targets, which can improve patient survival rates
Degradation of Fibrillar Collagen in a Human Melanoma Xenograft Improves the Efficacy of an Oncolytic Herpes Simplex Virus Vector
Heterogeneity of circulating tumour cell-associated genomic gains in breast cancer and its association with the host immune response.
Tumor cells that preferentially enter circulation include the precursors of metastatic cancer. Previously, we characterized circulating tumor cells (CTC) from patients with breast cancer and identified a signature of genomic regions with recurrent copy-number gains. Through FISH, we now show that these CTC-associated regions are detected within the matched untreated primary tumors of these patients (21% to 69%, median 55.5%, n = 19). Furthermore, they are more prevalent in the metastases of patients who died from breast cancer after multiple rounds of treatment (70% to 100%, median 93%, samples n = 41). Diversity indices revealed that higher spatial heterogeneity for these regions within primary tumors is associated with increased dissemination and metastasis. An identified subclone with multiple regions gained (MRG clone) was enriched in a posttreatment primary breast carcinoma as well as multiple metastatic tumors and local breast recurrences obtained at autopsy, indicative of a distinct early subclone with the capability to resist multiple lines of treatment and eventually cause death. In addition, multiplex immunofluorescence revealed that tumor heterogeneity is significantly associated with the degree of infiltration of B lymphocytes in triple-negative breast cancer, a subtype with a large immune component. Collectively, these data reveal the functional potential of genetic subclones that comprise heterogeneous primary breast carcinomas and are selected for in CTCs and posttreatment breast cancer metastases. In addition, they uncover a relationship between tumor heterogeneity and host immune response in the tumor microenvironment. SIGNIFICANCE: As breast cancers progress, they become more heterogeneous for multiple regions amplified in circulating tumor cells, and intratumoral spatial heterogeneity is associated with the immune landscape
Heterogeneity of circulating tumour cell-associated genomic gains in breast cancer and its association with the host immune response.
Pentraxin 3 deficiency enhances features of chronic rejection in a mouse orthotopic lung transplantation model
Chronic lung allograft dysfunction (CLAD) is a serious complication after lung transplantation and thought to represent chronic rejection. Increased expression of Pentraxin 3 (PTX3), an acute phase protein, was associated with worse outcome in lung transplant patients. To determine the role of recipient PTX3 in development of chronic rejection, we used a minor alloantigen-mismatched murine orthotopic single lung transplant model. Male C57BL/10 mice were used as donors. Male PTX3 knockout (KO) mice and their wild type (WT) littermates on 129/SvEv/C57BL6/J background were used as recipients. In KO recipients, 7/13 grafted lungs were consolidated without volume recovery on CT scan, while only 2/9 WT mice showed similar graft consolidation. For grafts where lung volume could be reliably analyzed by CT scan, the lung volume recovery was significantly reduced in KO mice compared to WT. Interstitial inflammation, parenchymal fibrosis and bronchiolitis obliterans scores were significantly higher in KO mice. Presence of myofibroblasts and lymphoid aggregation was significantly enhanced in the grafts of PTX3 KO recipients. Recipient PTX3 deficiency enhanced chronic rejection-like lesions by promoting a fibrotic process in the airways and lung parenchyma. The underlying mechanisms and potential protective role of exogenous PTX3 as a therapy should be further explored
Evofosfamide for the Treatment of Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma
Evofosfamide (TH-302) is a clinical-stage hypoxia-activated prodrug of a DNA-crosslinking nitrogen mustard that has potential utility for human papillomavirus (HPV) negative head and neck squamous cell carcinoma (HNSCC), in which tumor hypoxia limits treatment outcome. We report the preclinical efficacy, target engagement, preliminary predictive biomarkers and initial clinical activity of evofosfamide for HPV-negative HNSCC. Evofosfamide was assessed in 22 genomically characterized cell lines and 7 cell line–derived xenograft (CDX), patient-derived xenograft (PDX), orthotopic, and syngeneic tumor models. Biomarker analysis used RNA sequencing, whole-exome sequencing, and whole-genome CRISPR knockout screens. Five advanced/metastatic HNSCC patients received evofosfamide monotherapy (480 mg/m2 qw × 3 each month) in a phase 2 study. Evofosfamide was potent and highly selective for hypoxic HNSCC cells. Proliferative rate was a predominant evofosfamide sensitivity determinant and a proliferation metagene correlated with activity in CDX models. Evofosfamide showed efficacy as monotherapy and with radiotherapy in PDX models, augmented CTLA-4 blockade in syngeneic tumors, and reduced hypoxia in nodes disseminated from an orthotopic model. Of 5 advanced HNSCC patients treated with evofosfamide, 2 showed partial responses while 3 had stable disease. In conclusion, evofosfamide shows promising efficacy in aggressive HPV-negative HNSCC, with predictive biomarkers in development to support further clinical evaluation in this indication
Pilot clinical trial of neoadjuvant toll-like receptor 7 agonist (Imiquimod) immunotherapy in early-stage oral squamous cell carcinoma
BackgroundThere is no neoadjuvant immunotherapy for early-stage oral cancer patients. We report a single-arm, open-label, pilot clinical trial assessing the efficacy and safety of topical toll-like receptor-7 (TLR-7) agonist, imiquimod, utilized in a neoadjuvant setting in early-stage oral squamous cell carcinoma (OSCC).MethodsThe primary endpoint is reduction in tumor cell counts assessed by quantitative multiplex immunofluorescence and the immune-related pathologic response. The secondary endpoint is safety.Results60% of patients experienced a 50% reduction or greater in tumor cell count post-treatment (95% CI = 32% to 84%). Similarly, 60% of patients had immune-related major pathologic response (irMPR) with two complete pathologic responses, and 40% had partial response (PR) with the percent residual viable tumor ranging from 25% to 65%. An increase in functional helper and cytotoxic T-cells significantly contributed to a reduction in tumor (R=0.54 and 0.55, respectively). The treatment was well tolerated with the application site mucositis being the most common adverse event (grades 1-3), and no grade 4 life-threatening event. The median follow-up time was 17 months (95% CI = 16 months - not reached), and one-year recurrence-free survival was 93% of evaluable patients.ConclusionNeoadjuvant imiquimod immunotherapy could be safe and promising regimen for early-stage oral cancer.Trial registrationClinicalTrials.gov, Identifier NCT04883645
Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run
Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets
- …
