778 research outputs found
Finding a third archetypal technical system in architectural phenomenology
Within the scope of phenomenology and in order to understand architecture, the role of the technical system is as important as those of the purpose of the building or its form. Mass construction and skeletal construction relate to the architectural theory concepts stereotomy and tectonics respectively, which are suitable for describing the fundamental structural and constructive form of architecture. These two systems became established as man built his first shelters and, so far, represented opposite sides of the building industry’s possibilities. The development of new construction techniques and the relationship between research and technology have a great impact on architecture, although new processing methods and materials may not necessarily cause genuine tectonic changes. The technical dimension of architecture is analysed in this work describing how technical elements are built from materials, and then organised in systems. First, the paper examines the division of technical systems in two categories (massive systems and skeletal systems); then it studies timber’s modern production technologies and subsequently the paper critically analyses how these influence the architectural form. The paper concludes that a third archetypal technical system can be perceived with the assembly of surface elements, joining both the multifunctional aspect of the massive systems and the flexibility of the skeletal systems, this third category being fundamental in phenomenological terms
Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO
The two-dimensional metal forming at the interface between an oxide insulator
and SrTiO3 provides new opportunities for oxide electronics. However, the
quantum Hall effect, one of the most fascinating effects of electrons confined
in two dimensions, remains underexplored at these complex oxide
heterointerfaces. Here, we report the experimental observation of quantized
Hall resistance in a SrTiO3 heterointerface based on the modulation-doped
amorphous-LaAlO/SrTiO heterostructure, which exhibits both high
electron mobility exceeding 10000 cm/Vs and low carrier density on the
order of ~10 cm. Along with unambiguous Shubnikov-de Haas
oscillations, the spacing of the quantized Hall resistance suggests that the
interface is comprised of a single quantum well with ten parallel conducting
two-dimensional subbands. This provides new insight into the electronic
structure of conducting oxide interfaces and represents an important step
towards designing and understanding advanced oxide devices
Transport and excitations in a negative-U quantum dot at the LaAlO<sub>3</sub>/SrTiO<sub>3</sub> interface
In a solid-state host, attractive electron-electron interactions can lead to the formation of local electron pairs which play an important role in the understanding of prominent phenomena such as high T c superconductivity and the pseudogap phase. Recently, evidence of a paired ground state without superconductivity was demonstrated at the level of single electrons in quantum dots at the interface of LaAlO3 and SrTiO3. Here, we present a detailed study of the excitation spectrum and transport processes of a gate-defined LaAlO3/SrTiO3 quantum dot exhibiting pairing at low temperatures. For weak tunneling, the spectrum agrees with calculations based on the Anderson model with a negative effective charging energy U, and exhibits an energy gap corresponding to the Zeeman energy of the magnetic pair-breaking field. In contrast, for strong coupling, low-bias conductance is enhanced with a characteristic dependence on temperature, magnetic field and chemical potential consistent with the charge Kondo effect
Evidence of weak superconductivity at the room-temperature grown LaAlO<sub>3</sub>/SrTiO<sub>3</sub> interface
The two-dimensional electron gas at the crystalline LaAlO3/SrTiO3 (c-LAO/STO) interface has sparked large interest due to its exotic properties, including an intriguing gate-tunable superconducting phase. While there is growing evidence of pronounced spatial inhomogeneity in the conductivity at STO-based interfaces, the consequences for superconductivity remain largely unknown. We study interfaces based on amorphous LAO top layers grown at room temperature (a-LAO/STO) and demonstrate a superconducting phase similar to c-LAO/STO, however, with a gate-tunable critical temperature of 460 mK. The dependence of the superconducting critical current on temperature, magnetic field, and back-gate-controlled doping is found to be consistently described by a model of a random array of Josephson-coupled superconducting domains
Coping with Change
We are involved in changing technology, changing market demands, the need for new ways to manage effort, the need for more flexibility, and a growing need to have greater involvement on the parts of all people
Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton ( e − – p + ) and electron–positron ( e ± ) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e − – p + jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e ± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.This work is supported by NSF AST-0908010, AST-0908040, NASA-NNX09AD16G,
NNX12AH06G, NNX13AP-21G, and NNX13AP14G grants. The work of J.N. and O.K. has been supported
by Narodowe Centrum Nauki through research project DEC-2013/10/E/ST9/00662. Y.M. is supported by
the ERC Synergy Grant “BlackHoleCam—Imaging the Event Horizon of Black Holes” (Grant No. 610058).
M.P. acknowledges support through grant PO 1508/1-2 of the Deutsche Forschungsgemeinschaft. Simulations
were performed using Pleiades and Endeavor facilities at NASA Advanced Supercomputing (NAS), and using
Gordon and Comet at The San Diego Supercomputer Center (SDSC), and Stampede at The Texas Advanced
Computing Center, which are supported by the NSF. This research was started during the program “Chirps,
Mergers and Explosions: The Final Moments of Coalescing Compact Binaries” at the Kavli Institute for Theoretical
Physics, which is supported by the National Science Foundation under grant No. PHY05-51164. The first
velocity shear results using an electron positron plasma were obtained during the Summer Aspen workshop
“Astrophysical Mechanisms of Particle Acceleration and Escape from the Accelerators” held at the Aspen Center
for Physics (1–15 September 2013). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI
Microscopic processes in global relativistic jets containing helical magnetic fields
In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton (e−–p+) and electron–positron (e±) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e−–p+ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields
Recommended from our members
Aviation turbulence: dynamics, forecasting, and response to climate change
Atmospheric turbulence is a major hazard in the aviation industry and can cause injuries to passengers and crew. Understanding the physical and dynamical generation mechanisms of turbulence aids with the development of new forecasting algorithms and, therefore, reduces the impact that it has on the aviation industry. The scope of this paper is to review the dynamics of aviation turbulence, its response to climate change, and current forecasting methods at the cruising altitude of aircraft. Aviation-affecting turbulence comes from three main sources: vertical wind shear instabilities, convection, and mountain waves. Understanding these features helps researchers to develop better turbulence diagnostics. Recent research suggests that turbulence will increase in frequency and strength with climate change, and therefore, turbulence forecasting may become more important in the future. The current methods of forecasting are unable to predict every turbulence event, and research is ongoing to find the best solution to this problem by combining turbulence predictors and using ensemble forecasts to increase skill. The skill of operational turbulence forecasts has increased steadily over recent decades, mirroring improvements in our understanding. However, more work is needed—ideally in collaboration with the aviation industry—to improve observations and increase forecast skill, to help maintain and enhance aviation safety standards in the future
- …
