4,543 research outputs found

    Anomalous Transport in Velocity Space, from Fokker-Planck to General Equation

    Full text link
    The problem of anomalous diffusion in momentum (velocity) space is considered based on the master equation and the appropriate probability transition function (PTF). The approach recently developed by the author for coordinate space, is applied with necessary modifications to velocity space. A new general equation for the time evolution of the momentum distribution function in momentum space is derived. This allows the solution of various problems of anomalous transport when the probability transition function (PTF) has a long tail in momentum space. For the opposite cases of the PTF rapidly decreasing as a function of transfer momenta (when large transfer momenta are strongly suppressed), the developed approach allows us to consider strongly non-equilibrium cases of the system evolution. The stationary and non-stationary solutions are studied. As an example, the particular case of the Boltzmann-type PT-function for collisions of heavy and light particles with the determined (prescribed) distribution function, which can be strongly non-equilibrium, is considered within the proposed general approach. The appropriate diffusion and friction coefficients are found. The Einstein relation between the friction and diffusion coefficients is shown to be violated in these cases.Comment: 23 pages, 0 figure

    Inhomogeneity of dusty crystals and plasma diagnostics

    Get PDF
    Real dusty crystals are inhomogeneous due to the presence of external forces. We suggest approximations for calculations of different types of inhomogeneous DC (chain and DC with a few slabs) in the equilibrium state. The results are in a good agreement with experimental results and can be used as an effective diagnostic method for many dusty systems

    Quantum nature of the critical points of substances

    Full text link
    Thermodynamics of chemical elements, based on the two-component electron-nuclear plasma model shows that the critical parameters for the liquid-vapor transition are the quantum values for which the classical limit is absent.Comment: 4 pages, no figure

    Study of charge collection and noise in non-irradiated and irradiated silicon detectors

    Get PDF
    The large collection and noise were studied in non-irradiated and irradiated silicon detectors as a function of temperature (T), shaping time (0) and fluence , up to about 1,2 x 10(14) protons per cm2 for minimum-ionizing electrons yielded by a 106 Ru source. The noise of irradiated detectors is found to be dominted for short shaping times (¾50ns) by a series noise compo- nent, while for longer shaping times (80ns) a parallel noise component (correlated with the reverse current) prevails. For non-irradiated detectors, where the reverse current is three orders of magnetude smaller compared with irradiated detectors, the series noises dominates over the whole range of shaping times investigated (20-150ns). A signal degradation is observed for irradiated detectors. However, the signal ca be distinguished from noise, even after a fluence of about 1.2 x10(14) protons per cm2, at a temperature of 6øC and with a shaping time tipical of rge LHC inter-bunch crossing time (20-30ns). The measurements of the signal as a function of voltage shows that irradiated detectors depleted at 50% of the full depletion voltage can still provide a measurable signal-to-noise ratio

    Identity of electrons and ionization equilibrium

    Full text link
    It is perhaps appropriate that, in a year marking the 90th anniversary of Meghnad Saha seminal paper (1920), new developments should call fresh attention to the problem of ionization equilibrium in gases. Ionization equilibrium is considered in the simplest "physical" model for an electronic subsystem of matter in a rarefied state, consisting of one localized electronic state in each nucleus and delocalized electronic states considered as free ones. It is shown that, despite the qualitative agreement, there is a significant quantitative difference from the results of applying the Saha formula to the degree of ionization. This is caused by the fact that the Saha formula corresponds to the "chemical" model of matter.Comment: 9 pages, 2 figure

    On anomalous diffusion in a plasma in velocity space

    Get PDF
    The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients for plasma-like systems are found.Comment: 18 pages, no figure

    True Dielectric and Ideal Conductor in Theory of the Dielectric Function for Coulomb System

    Full text link
    On the basis of the exact relations the general formula for the static dielectric permittivity e(q,0) for Coulomb system is found in the region of small wave vectors q. The obtained formuladescribes the dielectric function e(q,0) of the Coulomb system in both states in the "metallic" state and in the "dielectric" one. The parameter which determines possible states of the Coulomb system - from the "true" dielectric till the "ideal" conductor is found. The exact relation for the pair correlation function for two-component system of electrons and nuclei g_ei(r) is found for the arbitrary thermodynamic parameters.Comment: 5 pages, no figure

    W+W- production and triple gauge boson couplings at LEP energies up to 183 GeV

    Get PDF
    A study of W-pair production in e+e- annihilations at Lep2 is presented, based on 877 W+W- candidates corresponding to an integrated luminosity of 57 pb-1 at sqrt(s) = 183 GeV. Assuming that the angular distributions of the W-pair production and decay, as well as their branching fractions, are described by the Standard Model, the W-pair production cross-section is measured to be 15.43 +- 0.61 (stat.) +- 0.26 (syst.) pb. Assuming lepton universality and combining with our results from lower centre-of-mass energies, the W branching fraction to hadrons is determined to be 67.9 +- 1.2 (stat.) +- 0.5 (syst.)%. The number of W-pair candidates and the angular distributions for each final state (qqlnu,qqqq,lnulnu) are used to determine the triple gauge boson couplings. After combining these values with our results from lower centre-of-mass energies we obtain D(kappa_g)=0.11+0.52-0.37, D(g^z_1)=0.01+0.13-0.12 and lambda=-0.10+0.13-0.12, where the errors include both statistical and systematic uncertainties and each coupling is determined setting the other two couplings to the Standard Model value. The fraction of W bosons produced with a longitudinal polarisation is measured to be 0.242+-0.091(stat.)+-0.023(syst.). All these measurements are consistent with the Standard Model expectations.Comment: 48 pages, LaTeX, including 13 eps or ps figures, submitted to European Physical Journal

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
    corecore