635 research outputs found

    The origin of the radio emission from beta Lyrae

    Full text link
    In this paper we present new observational evidence that supports the presence of an extra source of continuum emission in the binary system beta Lyrae. New VLA and IRAM observations, together with published data from the literature and ISO archive data, allow us to build the Spectral Energy Distribution of the binary between 5x10^9 Hz and 5x10^15Hz. The radio-millimeter part of the spectrum is consistent with free-free emission from a symbiotic-like wind associated with the primary component and ionized by the radiation field of the hidden companion. Furthermore, we also consider the possibility that the observed radio flux originates from collimated radio structures associated with the mass gaining component and its disk (Conical thermal jets). An extrapolation of this emission to the far-IR part of the spectrum indicates that in both cases the free-free contribution at these frequencies cannot explain the observations and that the observed infrared excess flux is due principally to the secondary component and its associated disk.Comment: 8 pages, 3 figures, A&A in pres

    Searching for OH maser emission towards the MIPSGAL compact Galactic bubbles

    Get PDF
    We conducted radio observations searching for OH 18-cm maser emission from a sample of 169 unclassified MIPSGAL compact Galactic bubbles. These sources are thought to be the circumstellar envelopes of different kinds of evolved stars. Our observations were aimed at shedding light on the nature of MIPSGAL bubbles, since their characterisation is a fundamental aid for the development of accurate physical models of stellar and Galaxy evolution. The maser emission is observatively linked to the last stages of the life of low- and intermediate-mass stars, which may constitute a significant fraction of the MIPSGAL bubbles. In particular OH masers are usually observed towards post-AGB stars. Our observations were performed with the Green Bank Telescope and, for each source, produced spectra around the four OH 18-cm transitions. The observations were compared with archive interferometer data in order to exclude possible contamination from nearby sources. The main result is that the OH maser emission is not a common feature among the MIPSGAL bubbles, with only one certain detection. We conclude that among the MIPSGAL bubbles the post-AGB stars could be very rare

    Detection of C3O in the low-mass protostar Elias 18

    Get PDF
    We have performed new laboratory experiments which gave us the possibility to obtain an estimate of the amount of carbon chain oxides (namely C3O2, C2O, and C3O) formed after irradiation (with 200 keV protons) of pure CO ice, at 16 K. The analysis of laboratory data indicates that in dense molecular clouds, when high CO depletion occurs, an amount of carbon chain oxides as high as 2-3x10^-3 with respect to gas phase carbon monoxide can be formed after ion irradiation of icy grain mantles. Then we have searched for gas phase C2O and C3O towards ten low-mass young stellar objects. Among these we have detected the C3O line at 38486.891 MHz towards the low-mass protostar Elias 18. On the basis of the laboratory results we suggest that in dense molecular clouds gas phase carbon chain oxides are formed in the solid phase after cosmic ion irradiation of CO-rich icy mantles and released to the gas phase after desorption of icy mantles. We expect that the Atacama Large Millimeter Array (ALMA), thanks to its high sensitivity and resolution, will increase the number of carbon chain oxides detected in dense molecular clouds.Comment: 19 Pages, 5 figures, Accepted to Ap

    The radio lighthouse CU Virginis: the spindown of a single main sequence star

    Get PDF
    The fast rotating star CU Virginis is a magnetic chemically peculiar star with an oblique dipolar magnetic field. The continuum radio emission has been interpreted as gyrosyncrotron emission arising from a thin magnetospheric layer. Previous radio observations at 1.4 GHz showed that a 100% circular polarized and highly directive emission component overlaps to the continuum emission two times per rotation, when the magnetic axis lies in the plane of the sky. This sort of radio lighthouse has been proposed to be due to cyclotron maser emission generated above the magnetic pole and propagating perpendicularly to the magnetic axis. Observations carried out with the Australia Telescope Compact Array at 1.4 and 2.5 GHz one year after this discovery show that this radio emission is still present, meaning that the phenomenon responsible for this process is steady on a timescale of years. The emitted radiation spans at least 1 GHz, being observed from 1.4 to 2.5 GHz. On the light of recent results on the physics of the magnetosphere of this star, the possibility of plasma radiation is ruled out. The characteristics of this radio lighthouse provides us a good marker of the rotation period, since the peaks are visible at particular rotational phases. After one year, they show a delay of about 15 minutes. This is interpreted as a new abrupt spinning down of the star. Among several possibilities, a quick emptying of the equatorial magnetic belt after reaching the maximum density can account for the magnitude of the breaking. The study of the coherent emission in stars like CU Vir, as well as in pre main sequence stars, can give important insight into the angular momentum evolution in young stars. This is a promising field of investigation that high sensitivity radio interferometers such as SKA can exploit.Comment: Accepted to MNRAS, 8 pages, 7 figures, updated versio

    Resolving the radio nebula around beta Lyrae

    Get PDF
    In this paper we present high spatial resolution radio images of the puzzling binary system beta Lyrae obtained with MERLIN at 5 GHz. We find a nebula surrounding the binary with a brightness temperature of 11000+-700K approximately 40AU across. This definitively confirms the thermal origin of the radio emission, which is consistent with emission from the wind of the B6-8II component (mass loss of order of 10^-7 Msun per year), ionized by the radiation field of the hotter companion. This nebula, surrounding the binary, is the proof that beta Layrae evolved in a non-conservative way, i. e. not all the mass lost by the primary is accretted by the secondary, and present measurements indicate that almost 0.015Msun had been lost from the system since the onset of the Roche lobe overflow phase. Moreover, the nebula is aligned with the jet-like structures inferred from recent optical measurements, indicating a possible connection among them.Comment: 5 pages, 2 figures. Accepted for publication in A&

    Surprising variations in the rotation of the chemically peculiar stars CU Virginis and V901 Orionis

    Get PDF
    CU Vir and V901 Ori belong among these few magnetic chemically peculiar stars whose rotation periods vary on timescales of decades. We aim to study the stability of the periods in CU Vir and V901 Ori using all accessible observational data containing phase information. We collected all available relevant archived observations supplemented with our new measurements of these stars and analysed the period variations of the stars using a novel method that allows for the combination of data of diverse sorts. We found that the shapes of their phase curves were constant, while the periods were changing. Both stars exhibit alternating intervals of rotational braking and acceleration. The rotation period of CU Vir was gradually shortening until the year 1968, when it reached its local minimum of 0.52067198 d. The period then started increasing, reaching its local maximum of 0.5207163 d in the year 2005. Since that time the rotation has begun to accelerate again. We also found much smaller period changes in CU Vir on a timescale of several years. The rotation period of V901 Ori was increasing for the past quarter-century, reaching a maximum of 1.538771 d in the year 2003, when the rotation period began to decrease. A theoretically unexpected alternating variability of rotation periods in these stars would remove the spin-down time paradox and brings a new insight into structure and evolution of magnetic upper-main-sequence stars.Comment: 5 pages, 3 figure
    corecore