3,382 research outputs found
Combinational logic for generating gate drive signals for phase control rectifiers
Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit
Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology
Gamma and neutron dose measurements for a thermal tungsten nuclear rocket critical experiment
Measurements of gamma and neutron dose distributions in core of thermal tungsten nuclear rocket experimen
Stellar abundances and molecular hydrogen in high-redshift galaxies -the far-ultraviolet view
FUSE spectra of star-forming regions in nearby galaxies are compared to
composite spectra of Lyman-break galaxies (LBGs), binned by strength of Lyman
alpha emission and by mid-UV luminosity. Several far-UV spectral features,
including lines dominated by stellar wind and by photospheric components, are
very sensitive to stellar abundances. Their measurement in Lyman-break galaxies
is compromised by the strong interstellar absorption features, allowing in some
cases only upper limits. The derived C and N abundances in the LBGs are no
higher than half solar (scaled to oxygen abundance for comparison with
emission-line analyses), independent of the strength of Lyman alpha emission. P
V absorption indicates abundances as low as 0.1 solar, with an upper limit near
0.4 solar in the reddest and weakest-emission galaxies. Unresolved interstellar
absorption components would further lower the derived abundances. Trends of
line strength, and derived abundances, are stronger with mid-UV luminosity than
with Lyman-alpha strength. H2 absorption in the Lyman and Werner bands is very
weak in the LBGs. Template H2 absorption spectra convolved to appropriate
resolution show that strict upper limits N(H2)< 10^18 cm^-2 apply in all cases,
with more stringent values appropriate for the stronger-emission composites and
for mixes of H2 level populations like those on Milky Way sight lines. Since
the UV-bright regions are likely to be widespread in these galaxies, these
results rule out massive diffuse reservoirs of H2, and suggest that the
dust/gas ratio is already fairly large at z~3.Comment: Astron J., in press (June 2006
Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets
The difference in formation process between binary stars and planetary
systems is reflected in their composition as well as their orbital
architecture, particularly orbital eccentricity as a function of orbital
period. It is suggested here that this difference can be used as an
observational criterion to distinguish between brown dwarfs and planets.
Application of the orbital criterion suggests that with three possible
exceptions, all of the recently-discovered substellar companions discovered to
date may be brown dwarfs and not planets. These criterion may be used as a
guide for interpretation of the nature of sub-stellar mass companions to stars
in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the
Astrophysical Journal Letter
Temporal Variability of the X-ray Emission of the Crab Nebula Torus
We have analyzed five ROSAT HRI images of the Crab Nebula spanning the years
1991 to 1997 and have found significant changes in the emission structure of
the X-ray torus surrounding the pulsar. Certain regions increase in brightness
by about 20% over the six years, while others show decreases in surface
brightness. The origin of these changes is unclear, but a possible explanation
is that the bulk velocity of the synchrotron radiating electrons has decreased
on the order of 20% as well.Comment: 15 pages plus 6 figures, figure 1 and figure 6 are in color, to
appear in The Astrophysical Journal, Jan 1, 1999, Vol. 510, #
Some Aspects of Rotational and Magnetic Energies for a Hierarchy of Celestial Objects
Celestial objects, from earth like planets to clusters of galaxies, possess
angular momentum and magnetic fields. Here we compare the rotational and
magnetic energies of a whole range of these celestial objects together with
their gravitational self energies and find a number of interesting
relationships. The celestial objects, due to their magnetic fields, also posses
magnetic moments. The ratio of magnetic moments of these objects with the
nuclear magnetic moments also exhibits interesting trends. We also compare
their gyromagnetic ratio which appears to fall in a very narrow range for the
entire hierarchy of objects. Here we try to understand the physical aspects
implied by these observations and the origin of these properties in such a wide
range of celestial objects, spanning some twenty orders in mass, magnetic field
and other parameters.Comment: 12 pages, 37 equation
Tungsten nuclear rocket, phase I, part 1 Final report
Tungsten water moderated nuclear rocket reactor experiments and analyse
- …
