144 research outputs found
Characterization of a monoclonal antibody that induces the acrosome reaction of sea urchin sperm.
A monoclonal antibody, J18/29, induces the acrosome reaction (AR) in spermatozoa of the sea urchin Strongylocentrotus purpuratus. J18/29 induces increases in both intracellular Ca2+ and intracellular pH similar to those occurring upon induction of the AR by the natural inducer, the fucose sulfate-rich glycoconjugate of egg jelly. Lowering the Ca2+ concentration or the pH of the seawater inhibits the J18/29-induced AR, as does treatment with Co2+, an inhibitor of Ca2+ channels. The J18/29-induced AR is also inhibited by verapamil, tetraethylammonium chloride, and elevated K+. All these treatments cause similar inhibition of the egg jelly-induced AR. J18/29 reacts with a group of membrane proteins ranging in molecular mass from 340 to 25 kD, as shown by immunoprecipitation of lysates of 125I-labeled sperm and Western blots. The most prominent reacting proteins are of molecular masses of 320, 240, 170, and 58 kD. The basis of the multiple reactivity appears to reside in the polypeptide chains of these proteins, as J18/29 binding is sensitive to protease digestion but resistant to periodate oxidation. There are approximately 570,000 sites per cell for J18/29 binding. J18/29 is the only reagent of known binding specificity that induces the AR; it identifies a subset of sperm membrane proteins whose individual characterization may lead to the isolation of the receptors involved in the triggering of the AR at fertilization
Monoclonal antibodies to a membrane glycoprotein induce the phosphorylation of histone H1 in sea urchin spermatozoa.
Two groups of mAbs reacting with external domains of a major sea urchin sperm membrane glycoprotein of 210 kD were isolated. Previous studies have shown that group I mAbs inhibit the acrosome reaction induced by egg jelly and also cause large increases in intracellular Ca2+ [( Ca2+]i). Group II mAbs, at comparable levels of cell surface binding, neither inhibit the egg jelly-induced acrosome reaction nor cause increases in [Ca2+]i. In this paper, we investigate the ability of these mAbs to induce the cAMP-dependent phosphorylation of sperm histone H1. Group I mAbs induce H1 phosphorylation to the same level and on the same peptide, as occurs upon treatment of sperm with egg jelly. These mAbs also activate adenylate cyclase to the same extent as egg jelly. Group II mAbs do not induce H1 phosphorylation and are only poor activators of adenylate cyclase. Group I mAbs compete with each other, but not with group II mAbs, for binding to the cell surface. These data indicate that the activation of adenylate cyclase is an initial event in the pathway leading from the binding of mAbs to a specific domain of the 210-kD protein at the cell surface, to the discrete phosphorylation of histone H1 in highly condensed sperm chromatin. The domain on the 210-kD protein recognized by group I mAbs plays a critical role in signal transduction during the early events of fertilization
Complex -Glycans Influence the Spatial Arrangement of Voltage Gated Potassium Channels in Membranes of Neuronal-Derived Cells
The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell body and outgrowths and thereby can generate different voltage-dependent conductances in these membranes
The Concise Guide to PHARMACOLOGY 2015/16:Ligand-gated ion channels
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13349/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
The Concise Guide to PHARMACOLOGY 2015/16:Nuclear hormone receptors
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
Discrimination in lexical decision.
In this study we present a novel set of discrimination-based indicators of language processing derived from Naive Discriminative Learning (ndl) theory. We compare the effectiveness of these new measures with classical lexical-distributional measures-in particular, frequency counts and form similarity measures-to predict lexical decision latencies when a complete morphological segmentation of masked primes is or is not possible. Data derive from a re-analysis of a large subset of decision latencies from the English Lexicon Project, as well as from the results of two new masked priming studies. Results demonstrate the superiority of discrimination-based predictors over lexical-distributional predictors alone, across both the simple and primed lexical decision tasks. Comparable priming after masked corner and cornea type primes, across two experiments, fails to support early obligatory segmentation into morphemes as predicted by the morpho-orthographic account of reading. Results fit well with ndl theory, which, in conformity with Word and Paradigm theory, rejects the morpheme as a relevant unit of analysis. Furthermore, results indicate that readers with greater spelling proficiency and larger vocabularies make better use of orthographic priors and handle lexical competition more efficiently
What ecotechnologies exist for recycling carbon and nutrients from domestic wastewater? A systematic map protocol
Abstract: Background: Pollution of the Baltic Sea continues to be a problem. Major terrestrial sources of nutrient emissions to the Baltic Sea are agriculture and wastewater, both major causes of eutrophication. Wastewater contains nutrients and organic matter that could constitute valuable products such as agricultural fertilizers and source of energy. With the EU’s action plan for circular economy, waste management and resource utilization is central. Thus the integration of resource recovery to wastewater management could create benefits beyond the wastewater sector. There is a growing interest in resource recovery from wastewater. However, there is no systematic overview of the literature on technologies to recover nutrients and carbon from wastewater sources done to date. Methods: This systematic map will identify a representative list of studies on ecotechnologies for reusing carbon and nutrients (nitrogen and phosphorus) from domestic wastewater, which includes e.g. sewage sludge and wastewater fractions. Searches will be performed in five bibliographic databases, one search engine and 38 specialist websites. Searches will mainly be performed in English, search for literature in specialist websites will also include Finnish, Polish and Swedish. Coding and meta-data extraction will include information on ecotechnology name and short description, reuse outcome (i.e. reuse of carbon, nitrogen and/or phosphorus), type of reuse (i.e. whether it is explicit or implicit), study country and location, latitude and longitude. All screening and coding will be done after initial consistency checking. The outcomes of this systematic map will be a searchable database of coded studies. Findings will be presented in a geo-informational system (i.e. an evidence atlas) and knowledge gaps and clusters will be visualised via heat maps
Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation
The Concise Guide to PHARMACOLOGY 2015/16:Enzymes
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13354/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
The Concise Guide to PHARMACOLOGY 2015/16:Transporters
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13355/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates
- …
